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Some aspects of a previous article bearing the same title—hereafter referred to as I—are further
developed and clarified. For reasons explained in the text, a variant of the set of assumptions used in I is
also introduced. The Bell inequalities are shown to follow from that new set of assumptions as well. The
derivation does not appeal to the concept of a density of probability in a supplementary variables space, and
it is basically independent of the other modes of derivation of the same inequalities. Illustrations by means of

model theories are given.

I. INTRODUCTION

Recent experimental results! are generally in-
terpreted as providing substantial indications that
the Bell inequalities® are violated in the way that
quantum mechanics predicts. Hence, it is impor-
tant to study how wide the field of the concepts and
general ideas that a violation of these inequalities
falsify actually is.

To contribute to this program was already the
purpose of a previous article bearing the same
title® and referred to as I below. Specifically,
paper I based a derivation of the Bell inequalities
on a set of outwardly plausible assumptions, with
the purpose of using the experimental violation of
the inequalities to show that at least one of the as-
sumptions of the set must befalse, independently of
any interpretation of the quantum-mechanical for-
malism.

One of these assumptions (assumption 3 of I) is
“contrafactual”: It asserts that if something were
changed in the instruments with which a given sys-
tem S will interact in the future, that could not
change the actual properties of S. "™doubtedly,
this sounds plausible. However, Stapp® recently
based a very simple derivation of the Bell inequali~
ties essentially on assumptions of such a kind. As
a result, it might seem likely that, in I, the blame
for the experimental discrepancy should be entire-
ly attributable to assumption 3, thus making the
other ones unobjectionable again. One of the pur-
poses of the present article is to show that the sit-
uation is not so simple, and, more specifically,
that if the remaining assumptions are associated
with a new plausible one which is no¢ contrafactual,
the derivation of the Bell inequalities remains pos-
sible.

Sections II and III make a few points of I more
explicit. The new assumption and the correspond~
ing derivation are then described in Sec. IV. Sec-
tion V is an application to three models.

II. SUBENSEMBLES AND NONCOMPATIBLE PROPOSITIONS

In I a system Z of two free stable spin-3 par-
ticles U and Vlying in a state of total spin zero
(owing to some previous interaction) is considered
and a set (D +A) of definitions (D) and assumptions
(4), bearing in particular on such propositions as

u; (v;) =the spin of U (V) along &; is +%#/2, (1)

is introduced. Propositions are defined by refer-
ring to the existence of a specific type of instru-
ment (here the Stern-Gerlach device) by means of
which we could check their validity on any specified
particle. But it is assumed (as part of A) that in
some instances such a proposition may be true on
a system even if nobody knows it is. The full

(D +A) set is then introduced and it is shown that
in the particular case of the U + V systems intro-
duced above, the Bell inequalities follow. Since
these inequalities are violated, it is concluded that
at least one of the elements of (D +A) must be false
or meaningless. - '

The main intermediate step in the argument is to
show what follows. If (D+A) were valid, then in
the pavticular case of the U+V systems under con-
sidevation the following “statement S” would be
true:

Statement S. Any ensemble E of N free subsys-
tems V (the same would hold for systems U) is
composed of disjoint subensembles
Es, ..., o0p(00...,0,=x1), the n(o,,...,0,) ele-
ments of which being such that proposition v, (v])
is true if o;=+1 (-1), where v/ is the orthogonal
complement of v; and i=1,...,k

Statement S implies that several noncompatible
propositions are simultaneously true on the same
system. As such, is it to be rejected as violating
either experimental facts or consistency require-
ments? This is our first question. Should it be
answered affirmatively, then the result we are
aiming at, namely a disproof of (D +A), would be
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obtained at “a low price” since it would require no
experiment and no comparison with observable
quantum-mechanical predictions. However, state-
ment S does nof contradict experimental facts,
since we cannot sort out the E, .  ,, from E.°
It does not contradict our operational definition of
a proposition either, since the latter merely means
that if we consider just one proposition on a sys-
tem, an instrument exists that enables us to verify
its truth. Hence, contrary to appearances, state-
ment S cannot be rejected a priori except on the
basis of specific interpretations of quantum me-
chanics. It can be disproved only a posteriori,
through the fact that it entails the Bell inequalities.
On the other hand, it may be noted that asser-
tions such as the assertion

VAU - o AUy (2)

(which is true on £, ., ..., +1, A meaning the logi-
cal “and”) are not propositions since no correspond-
ing instrument exists. But this merely shows that
if (D +A) were valid, meaningful assertions would
exist that would not fall into the class of the propo-
sitions, when the latter is operationally defined in
the manner specified above. This creates no dif-
ficulty, provided that assertion (2), whichis not em-
pirically testable, is not identified with the inter-
section

vNB,Ne N, (3)

of propositions v,, v,, ..., U, as that intersection is
defined in the quantum propositional calculus.®’
In that calculus the intersection Na; of several
propositions a; is itself a proposition. It can be
defined either as corresponding to the intersection
of the Hilbert-space linear manifolds correspond-
ing to the a; or, operationally, by the Jauch pro-
cedure of infinitely iterated measurements’ (if
such a procedure is considered as “operational”).
The latter definition, in particular, shows that
Na; is in principle experimentally testable, asany
proposition should be. In the simple case @; =7;
such an intersection is v, if all the &; coincide and
@ otherwise.

Let it be stressed that the existence of meaning-
ful but not empirically testable assertions, such as
(2), is a logical possibility. In fact, the hidden-
variables models provide elementary examples.
Let us, for instance, consider the Bell-Clauser
model for one spin-3 particle.?'® It exactly repro-
duces all the observable predictions of quantum
mechanics for such a spin, hence it also repro-
duces the structure of the quantum-mechanical lat-
tice of propositions as regards spin-3 systems. In
particular, the Jauch procedure applied to v,N7,
gives ¢ whenever €, #€,. Nevertheless, since the
theory is deterministic, the result we would obtain

if we measured v, is determined by the hidden
variables (which are “local”?'®) in any particular
case, and so is—simultaneously —the result we
would obtain if we measured v, instead. Let v,Av,
be the assertion “the hidden variables of the par-
ticular particle under consideration have values
such that they would induce the result of a mea-
surement of v, to be “yes” if that measurement
were performed and that they would induce the re-
sult of a measurement of v, to be “yes” if that
measurement were performed.” As soon as we
consider the local-hidden-variables assumptions as
not a priovi meaningless we must grant that v,A v,
is meaningful (and not necessarily false). How-
ever, it is not empirically testable because we
cannot sort out from an ensemble the particles for
which it is true. Hence, meaningful assertions that
are not empirically testable may exist in some
models, which is what was to be shown. The proof
cannot be objected to on the basis of the von Neu-
mann argument against hidden variables'® since
that argument makes use of a supplementary as-
sumption'! that we do not introduce. It cannot be
objected to on the basis of what are sometimes
called the “Gleason troubles”!! either, since the
relevant Hilbert space has dimensionality 2.
Remark. The explicit interpretation of asser-
tion v,A v, given in the model just described makes
it apparent that E,, ,, is the intersection of the en-
sembles E,,  and E _ , corresponding to v, and
v,, respectively, in the very sense that the notion
of intersection has in the classical theory of sets.
This accounts for the use made in I of the classi-

cal theory of sets for combining the E;, ..  ,,. In
particular, it is the reason why the equalities
n(0,,0,,0,) =N (4)
91,92,03
and
M(i,j)=N"* 0,0,n(0,,0,,0,) (5)

01,02,03

could be written there.

III. ROLE OF THE CONCEPT OF ISOLATION

Let us consider the following statements:

p,(S) =the system S is free (or “isolated”) as re-
gards spins; -

D, =the Bell inequalities are satisfied.

When p, or p, concern exclusively a system S
€{U, V}, where U and Vare the two particles con-
sidered in Sec. II we write respectively p,(U, V) or
b(U, V).

It has been pointed out'? that what is proved in I
is not V ‘ ‘

(D+A)=1p(U, V), (6)
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but

(D +AWND,(U,V)=p,(U,V) (7)
or equivalently

(U V)=(D +A)"vp/(U,V), ()

where the notations=, v, A, 4, and a’ mean logi-

cal implication, conjunction, disjunction, state-

ment a is true, and statement a is false, respec-

" tively. In other words, this means that the proof
given in I formally depends on the assumption that
U and Vare isolated during their flight.

On the other hand, in the context of the derivation
actually performed in I a definition of p,(S) (i.e., of
“S is free” as regards spins) that would be both
completely precise and fully specified once and for
all is not requested. In order for (7) to hold true
it is sufficient that the meaning of p,(S) should be
specified in such a way that when V (U) is a stable spin-
3 particle (or a photon) and p,(V) (p,(U)) is true
then the proposition (1) (or the analogous one with
polarization) is persistent (in the sense defined
empirically in Sec. IV below) as well as its ortho-
gonal complement. Now the fact that a proposition
such as proposition v, defined by (1) is persistent
under some specified general conditions G of an
operational type is a fact that can be checked by
independent experiments bearing on particles with
spin 3 (or on photons) submitted to such conditions
G. Any set of general conditions G for which the
result of such experiments is positive® can be
used for a partial specification of the meaning of
p,(V), simply by asserting that whenever these
conditions are realized p,(V) is true by definition.
Such a partial definition is of a stipulative type.
Within its range it will usually coincide with the
more intuitive definitions of isolation very briefly
sketched in I but this is by no means necessary for
the argument.

It is then clear that the term p,(U,V) on the left-
hand side of (7) is not an assumption but an experi-
‘mental specification. It merely asserts that if we
want to disprove (D +A) by observing violations of
the Bell inequalities we must choose the general
operational conditions G under which the experi-
ment is to be performed in some specific way.
Namely, we must choose them so that between the

‘times ¢, (corresponding to the end of the emission
process) and ¢, (at which a measurement begins),
measured in the laboratory referential, they belong
to the class of those for which the experiments
mentioned above have shown that propositions of
the type of the proposition v; defined by (1) are
persistent.

An example of a case in which p,(U,V) is not valid
is the one in which U and/or V interact during their
flight with atoms or gas molecules by way of a

spin-dependent interaction, even if such an inter-
action is assumed to be local. An experimental
test of the Bell inequalities performed under such
conditions would not (in the present stage of our
knowledge) constitute a relevant test for (D +A).
On the other hand, it would still—by the way of the
generalized Bell inequalities'*'?—be a test of the
local-hidden-variables hypothesis.?*® This is one
illustration (there are others) of the fact that it is
somewhat more difficult to disprove (D +A) in full
generality than just to disprove p,.

Rewmark 1. The fact that a proposition is persis-
tent may depend on the referential. However, such
an observation does not make assumption 2 of I
less credible; if a proposition a is persistent on a
stable system in a given referential, then assump-
tion 2 is a natural one in tkat referential.

Remark 2. The question of the reproducibility of
the general conditions G deserves a comment. If
we operate on one particle.only— V for instance—
then in order to check that v; is persistent under

-some such conditions we must measure v; at a

time /,, measure it again at a time t,, and verify
that both measurements give always (i.e., for any
V) the same result. But then the presence of the
very instruments used for these measurements
should in principle be considered as a part of the
general conditions G. This creates a difficulty
since in principle it restricts the case in which
Pp(V) is given a meaning to those in which the in-
struments in question are really present, while
the applications described in I of that concept are
to a case in which #o instrument interacts with V.

Such a difficulty is alleviated to a fair extent by
considering both particles U and V. Since these
particles are strictly correlated, the first of the
two measurements considered above can be re-
placed by a measurement made on U. The corre-
sponding instrument can then be placed arbitrarily
far away from the region of interest, simply by
setting the source of the U + V system far enough
away. Similarly, f{, may be taken arbitrarily large
and the second instrument, acting on V, can cor-
respondingly be placed very far from the region of
space in which we want to define the concept p,(V),
that Vis free as regards spin. It is then a natural
convention.to exclude both instruments from the
general experimental conditions G that are to be
exactly reproduced whenever we want to be sure
that Vis “free” in the region in question.

Unless otherwise specified, such a convention
is adopted in what follows. In other words, the
general experimental conditions G merely refer to
the nature of the transversed material, the pre-
sence or absence of a magnetic field, and so on, in
a given region R of space. It is assumed that the
persistency of v; has been checked on many sys-
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tems Vby several methods including the indirect
one just described. Then if the results are always
positive, we say that by definition, under condi-
tions G, any system Vproduced by a similar
source is free (or isolated) in R, as regards spin.

IV. DESCRIPTION OF THE ARGUMENT

This section describes the present status of our
proposed method of derivation of the Bell inequali-
ties. For the reader’s convenience it incorporates
enough of the material already presented in I so as
to make a rereading of I unnecessary.

The method makes use of the concepts of systems
and propositions. As regards the former we as-
sume that we can use it in the usual way. In par-
ticular, if a system is composed of two noninter-
acting parts U and Vthat have interacted in the
past (a case that repeatedly occurs in the following
argument), then U and V are themselves to be con-
sidered as “systems.”

As regards the notion of proposition, we require
first of all that it should be an assertion (a) bearing
on a system, and (b) that can be either “yes”
(true), “no” (false), or undefined. Moreover, we
require also, as stated in Sec. II, that such a con-
cept should be more restrictive than the vague con-
cept of a mere assertion in that a proposition must
rvefer to the existence of a specific class of instru-
ments by means of which it could be measured. In
that respect it may be said that we define proposi-
tions operationally. On the other hand, the fore-
going requirement merely means that in order to
know whether an assertion a about a system S is a
proposition or not we must (a) consider a indepen-
dently of any other assertion that may or may not
be formulated simultaneously about S, and (b) in-
quire whether or not an instrument A exists that
would enable us to measure a at time ¢ ¢f we could
make S interact with A at time ¢ or immediately
afterward. Note that it is nof required that we
should have the possibility to actually do so on the
particular system S that we consider. It suffices
that we can perform such measurements on sys-
tems of the same type as system S.

Let a’ denote again the orthogonal complement
to a.

Let us now proceed to formulate the definitions
and assumptions needed.

Assumption 1. It is meaningful to associate to
any proposition a the concept of a family F(a) of
systems, F(a) being defined by the following con-
dition. The systems S that belong to F(a) are all
those that are such that if @ were measured on-S
by any method the result yes would be obtained
with certainty.51¢

Obviously the definition does not imply that if S

does not belong to F(a) it belong to F(a’).

Definition 1. If a system S belongs to F(a), a is
true on S.

Definition 2. Let a system S be considered be-
tween times £, and /, in a given referential in which
all the instruments are at rest. Let £, < {,< {,< ,.
a is said to be persistent on S between /, and ¢, if
whenever «a if found true on S at time /, it is also
true at time ¢,.

Definition 3. Some systems U+ Vare produced
in such a way that measurements of the spin com-
ponents S¥)(&;) and S(&;) of U and V along any
common direction &; always give opposite results.
Such systems are said to be “in a state of total spin
zero.”

Definition 4. In the case of a V particle that con-
stitutes a part of a spin-zero U+ V system, V is
said to be free as vegavds spin between times t
and ¢, if during that time interval it is subjected to
general experimental conditions G under which it
has previously been checked, for any ¢, on other
systems that the proposition “S ) (&) =m;” is per-
sistent (the precise nature of G and of the check is
described in remark 2 of Sec. III).

Assumption 2. Again let ¢, < £,< £,< £, and let
particle V be free as regards spin during the time
interval (¢, £,). Then if v; is true at time ¢, it is
also true at time ¢, (as regards the meaning of that
assertion see again footnote 16).

Remark 1. Assumption 2 could easily be gen-
eralized to system other than the V (or U) parts of
such spin-zero U + V systems. But as regards
such V (or U) parts it has an immediate conse-
quence which is that if it is true, then SY(&;) (or
S%)(&;)) cannot be affected by the physical interac-
tion of U (or of V) with the instrument that mea-
sures it. In other words, if a measurement gives
a definite value for SY(&;), then S‘?(%,) must have
had that definite value even before the measure-
ment, whenever conditions G prevail.

The proof is that if S(”)(E,-) is measured at a time
t" and is found to be equal to a certain value m;
=+1 in %/2 units then at #,> ¢’ S”(&;) has the defin-
ite value —my;. Since S()(8;) is persistent, as-
sumption 2 implies that S™(3;) = —m; also at a time
t,< t’. The strict correlation between S(V)(Ei) and
S@(&,) then implies that at time #* S©(&;) =m;.
Q.E.D. .

Such a result is not compatible with the usual in-
terpretation of quantum mechanics. Is this a suf-
ficient proof that assumption 2 has to be discarded?
The answer isno, for reasons similar to those al- )
ready developed in Sec. II. In fact, for observable
consequences to be reached, a third assumption
must be introduced, such as assumption 3 of I.
However, for the reasons given in Sec. I, we pre-
fer to introduce here a new “assumption 3” instead,



which can also be given the name of “inductive cau-
sality.”

Assumption 3 (inductive causality). Let a be a
statement that bears on a property of a system and
let it be the case that the validity of a at time £ on
a system S can be inferred from a knowledge of the
fact that S has a certain property b at a later time
t, (t,> t). .Let E be an ensemble of systems S con-
sidered at time £. Let E, be an unbiased sample of
E, selected at a time /' < { by some assistant, ig-
norant of what we shall do with that sample. Let
then a measurement of b be made at a time immed-
iately before ¢, on every element of E,. Then the
assumption is: If the result of that measurement
is positive in every case, a was valid at time ¢,
not only on every element of E, but also on every
element of E.

Remark 2. That assumption closely parallels our
intuitive notion that ‘the cause must be anterior to
the effect,” that “therefore” a cannot have been
induced in the elements of E, by the very act of
measurement, and that “therefore” it must have
been true already on every element of E,, hence,
by induction, on every element of E.

Devrivation of the Bell inequalities. The adjunc-
tion of assumption 3 to the list makes it possible
to derive the Bell inequalities.””

Let F be a source emitting a large number N of
spin-zero U + V systems during a short time in-
terval centered on time f,. Let $ be the composite
system constituted by all these N U + V systems
and let S be the composite system constituted by
all the corresponding particles U. By imagining
a large number of replicas we may build up an en-
semble E of systems S; let us identify it, at a time
t> t,, with ensemble E considered in assumption 3.
Similarly, let the property b considered in as-
sumption 3 be identified with a property b; that S
may indeed have and which is described as: The
U parts of S constitute two distinct families F(u;)
and F(«}), inwhichS@(&;) has the definite values
+1and -1, respectively. Finally, let a be the
statement expressed by the same sentence as the
one describing b, the difference being, as stated in
assumption 3, that @ and b are not considered at
the same time and do not bear on the same ensem-
bles of systems S.'®

Let us now assume that at some time ¢'> ¢, (¢’ <?)
an assistant selects an unbiased sample E, of E (as
stipulated in assumption 3). Let ¢ > ¢ and let us
assume further that immediately before {, all the
elements of E, are made to interact with an experi-
mental device that measures the S(”)(Ei) of all the
constituting particles U. As we know, property &
is then possessed at ¢, by every element of E;,. On
the other hand, we know from the foregoing remark
1 (this is where the V parts, the spin-zero hypo-
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thesis, and all our other specific assumptions in-
tervene) that the validity of statement @ on a sys-
tem S at time ¢ can be infered from a knowledge of
the fact that at time ¢, > ¢ the same system S pos-
sesses property b. The conditions for applying
assumption 3 are therefore satisfied; and assump-
tion 3 then tells us that a was valid at time £ on
every element of E, that is on all the systems S,
including those that never interact with any mea-
suring instrument. .

Let us now consider not just one but four suben-
sembles, E,, E,, E,, and E’, of E, all constituting
unbiased samples. Immediately before f, let the
elements of E, be subjected to a measurement of
b,, as described above, and similarly let E, and
E, be subjected respectively to measurements of
b, and b,. The foregoing reasoning can be repeat-
ed as regards E,, E,, and E,. It shows in particu-
lar that at time { the elements of E (on which no
measurement is assumed to be ever made) are
such that statements @,, a,, and a, are valid on
them.

Let S be an element of E. The reasoning above
shows that at time ¢S is simultaneously composed
of two different (and disjoint) families F(«,) and
F(u]), of two different (and disjoint) families F(x,)
and F(u,) and of two different (and disjoint) fami-
lies F(u,) and F(u;). Let U be a component of S

-and let 0; =+1 or -1 according to whether U be-

tongs to F(u;) or to F(u{). Let n(0o,,0,,0,) be the
number of components of S on which 0,, 0,, and
g, have the specified values shown (0; =+1). Let
n(0,, 0,, .) be the number of components of S on
which 0, and 0, have the specified values shown,
0, being arbitrary and let n(o,,.,0,) and u(. , 0,, 0,)
be defined similarly. Both common sense and

the classical theory of set (which is the only one
in existence) independently inform us that

n(0,,0,,.) =n(0,,0,, +1) +7(0,, 0y, -1)

=D 0,05, 0) . (8)
93
and that
Z n(ol’ 02’ ‘) = Z n(ou ] 03)
0140y 0,404
= Z (., O 03)
02 ,03
=N, (9

where N is the number of particles U composing S.
The numbers such as 7(0,, 0,, . ) are not direct-

ly measurable. But they can be measured indirect-

ly, by making use of the strict spin correlation be-

tween U and V. Let us consider again the compos-

ite system 8, the U particles of which compose S.
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If we consider three such systems 8, all of them
having N U+ V components and if N is very large,
then, disregarding small statistical fluctuations,
the numbers #(0,, 0,, .) are the same on the three
8.9 Moreover, they are equal to the numbers
8(0,, —0,,.) of the U+ V components of 8, the U
part of which has SY(€,) =0, and the V part of which
has S(V)(Ez) =~0,. Similar remarks hold true as
regards n(0,,.,0,) and x(. ,0,,0,). Hence, we
can measure #(0,, 0,, .) by measuring &(0,,0,,.)
on one of our three composite systems §, that is,
by making a correlation experiment. And simi-
larly, we can measure 7(0,, ., 0;) and (., 0,, 03)
by operating on the two remaining 8.

Let then P(i,j) be the mean value of the quantity

2 - -
7SORSTE), (10)
P(1,2)=N"1 D 0,0,80,,0,.) (11)

031102

==N"! E 0’10'2)’5((71, Oy - )

01,09

=_N-! Z 0,0,n(0,,0,,0,) (12)

01,05,03

and similarly as regards P(1, 3) and P(2, 3), so
that

B=P(1,2)+P(1,3) + P(2, 3)

==-N"1 Z (0,0, +0,0, +0,0,)n(0,,0,, 0,)

G,1105,04 ‘
(13)
N"l
=TT Z [(0,+0,+0,)* = 3]n(0,,0,,0,).
01,053,053

(14)

" Hence, since (0, +0,+0,)>=9 or 1,
B<N7' > n(0,0,0,)=1. (15)

01 ,02 ,03

This is one of the generalized Bell inequalities,
which is thus proved as a consequence of assump-
tions 1, 2, and 3. The other Bell inequalities can
be proved in the same way.

\

V. ILLUSTRATIONS

The assumptions on which the foregoing deriva--
tion rests do not exactly coincide with those on
which any of the other existing derivations are
based. In order to grasp more accurately the role
of these various assumptions it is appropriate to
investigate three model theories that violate the.
Bell inequalities, but which do so for reasons that,
according to the preceding analysis, are different.

Theory 1: Naive quantum mechanics

Theory 1 is just the interpretation of quantum
theory that attributes an objective existence to the
state vector. In that it coincides with Schrdod-
inger’s first conceptions about wave mechanics. In
theory 1 the reduction of the state vector is objec-
tive and the state vector constitutes a complete
representation of reality. Therefore a spin-zero
U+ V system does not have any definite value of
S)(&;) in that theory. But when a measurement of
S®(8,) is made, the overall state vector is there-
by reduced and S(V’(Ei) suddenly acquires a value.
Since V is then free according to our definition 4
it follows that assumption 2 is violated in the pre-
sent theory. Hence, according to the analysis of
Sec. IV the violation of the Bell inequalities is to
be attributed to the violation of assumption 2 by
the theory in question.

Theory 2: de Broglie-Bohm-Bell (dBBB) model

As is well known, de Broglie®® proposed in 1927
a hidden-variables model that was developed in-
dependently by Bohm.** More recently, Bell''***de-
scribed one possible way of introducing spin in
that model while preserving the observable pre-
dictions of quantum mechanics. Bell also dis-
cussed, in that theory, the correlations between
the spin components S®(&;) and $")(&)) of a two-
particle system U + Valong one common direction
& =€,. Here it is necessary for our purpose to
write down explicitly the equations for the general
case &; #&,. This should make it possible to locate
exactly the reason why the proof of Sec. IV does
not apply to that model.

Let us recall that the model theory in question
is based on a somewhat simplified dynamics in ‘
which the motion of a spin-3 particle along its axis
Ox of propagation may be considered as classical,
and in which a wave packet initially centered
around z =0 is shifted to a wave packet of the same
width and same direction of propagation but cen-
tered around z =m/i(f) (where m=+1=8,) if, from
time -« to time £, it traverses a magnetic field
H(x), where h(t) is a constant whenever H,(x)=0
at the place where the particle is at time £. In ad-
dition, the model incorporates supplementary
variables Z; (“hidden” variables) that make it de-
terministic and that give directly the result of the
measurement. Specifically, to each spin-z parti-
cle there corresponds a vector 7 in the plane per-
pendicular to Ox and measurement of a spin com-
ponent along &; means observing whether —Z'(é,-) is
positive or negative after the particle has tra-
versed a Stern-Gerlach magnet oriented along &;.
Hence, the 7 may be considered as the instrument
coordinates. In application of the general the-
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ory®°'?! the derivatives of the components of 7 are proportional to the corresponding currents. In the case

of two spin-3 particles U and V each traversing one Stern-Gerlach magnet this leads to the equations

22,23

> (=1 an 10, (Z, = (= 1)1 ()Pl (2, = (=1 D

Z,=gi(t) =2

(16)

Z ’am n Izl(pl(Z1 - (_l)mhl(t»lzlfpz(zz - (—l)nhz(t))lz

where £=1,2, k=m if i=1and k=nif £=2, and
where Z, , and Z,, h, are respectively the Z co-
ordinates and the shifts at time ¢ of the trajector-
‘ies of particles 1 and 2 in the directions &,, &, of
the two magnets. The function g;(¢) in Eq. (16) is
different from zero and positive only during the
(short) time interval when particle ¢ traverses the
corresponding magnet, %;(f) and g;(f) are related
by

t .
n(t= [ g(nar, (17)

and, finally, the coefficients a,, , (m,n=1,2) are
those corresponding to the initial quantum state

) =Zam n um(pl(zl) ® Un‘Pz(zz) : (18)

of the two-particles system where u,¢,(2,) and
v,¢,(2,) are the two-component spinor wave func-
tions of the particles, where u,, (v,) are the eigen-
vectors of the spin component of U (V) along direc-
tion &, (&,) (notice that the spins of U and Vare thus
quantized along different directions).

Let us consider the case in which the two par-
ticles U and Vare in a state of total spin zero.
With the foregoing definition of «,, and v, this gives

J

@, =0y =sind, (19)

a,, ==a,, =cosb.

Let the two measurements be well separated in
time (as well as in space) and let the one on Utake
place first. Let (f,, ¢, + At,) be the corresponding
time interval. #Z,(f) and g,(f)are zero during that
time so that Eq. (16) reduces to

> _ ‘I‘Pl(Z1+h1(t))|2+ |‘P1(Z1"h;(t»lz
A X AT e X PRV )

(20)
Z,=0. (21)

After that first measurement is completed, #,(f)
takes the constant value H, given by

L+ ALy
H1=f
t

so that as regards the second measurement [g,(?)
=0], Eq. (16) reduces to

Z,=0, (23)

g(tat', (22)

s N
Zz :gz(t)F, (24)
where

N=lp(Z, +H,)P[-sin6| 9,(Z, + i, ()P +cos® 0], (Z, — hy(1) ]

o+ lo(Z, - H,)P[-cos®6lg,(Z, +hy()) P +sin®0p,(Z, = hy(1)) F] ' i (25)

and where D is obtained from N by deleting the
minus signs before sin®0 and cos®6.
Let the wave packets ¢ be strongly peaked
around zero. Equation (20) then shows that if Z,
is initially very small and positive (negative) it
follows the behavior of #(#) (=7(¢#)), that is, it
takes essentially the value +H, (-H,) after the first
measurement. - Under such conditions either
¢(Z,+H)) or ¢,(Z, - H,) is negligibly small so that
Egs. (24) and (25) simplify. In the case 6=0 they
show?? that after the second measurement the val-
_ue of Z,/H, is necessarily opposite to that of
Z,/H,. A comparison with the behavior of Z,

r

shows, therefore, that the behavior of the instru-
ment coordinate Z, is quite different from what it
would have been if the first measurement had not
been made.
- In the general case 6#0the time evolution of Z,
is complicated. It depends partly on the initial
value of Z, and partly on whether Z, =+H,; the rel-
ative “weight” of these two determinations being
dependent on 6, that is, on the orientation of the
magnet that interacted with U beforehand.

Let us now locate the point that makes. the deriv-
ation of the Bell inequalities described in Sec. IV

- inapplicable to the dBBB model theory.
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Considering again a spin-zero U+ V system on
which a measurement of S“)(&) is made at time ¢,
by means of a Stern-Gerlach magnet, we could
firstargueasfollows: Letusassume that initially
both Z, and Z, have very small positive values. If
S(V)(E) were measured at /,< /, the foregoing cal-
culation shows that a positive result would be ob-
tained with certainty. On the other hand, the same
calculation shows that if that measurement were
made at {,> £, a negative result would be obtained
with certainty. In other words (see definition 1) v
is true before ¢, and false after {,; hence assump-
tion (2) is violated.

But, in fact, the reasons why the proof of Sec.
IV does not apply here are even more radical. If
we aliow for the possibility of indirect measure-
ments, as we should, then assumption 1 (and def-
inition 1) cannot even be applied to v since in the
present case a direct method of measurement and
an indirect one [a measurement of S&)] would
give opposite results. -

Theory 3: A model inspired by Bohr’s approach

Bohr repeatedly stressed (a) that he did not con-
sider the wave-packet reduction as an objective
process and (b) that he considered quantum me-
chanics as a complete theory. These two appar-
ently contradictory statements are reconciled if
the view is accepted according to which microsys-
tems never possess any definite properties.
Those we attribute to them at a given time ¢ are
mere conventions, the convenience of which de-
pend on the experimental setup.

Should we incorporate in that setup the instru-
ments with which the system will interact later
than ¢? Several of Bohr’s statements and, in par-
ticular, his answer to Einstein, Podolsky, and
Rosen criticism seem to be based on a positive
answer to that question (see, e.g., Ref. 24 for an
unfolding of that point). The list of the “proper-
ties” of a system of which we may conveniently
think as having definite (though unknown) values is
determined by our choice of our instruments of
observation. It changes if we change the latter.

Because of the purely conventional nature of the
attribution of properties to microsystems, Bohr’s
theoretical framework distinctly contradicts as-
sumption 1 of Sec. IV and the violation of the Bell
inequalities by conventional quantum mechanics
can, in the spirit of the foregoing analysis, be
attributed to that fact. On the other hand, for the
sake of illustrating the interplay of the assumptions
of Sec. IV, we may also consider a naive and semi-
realistic model inspired by Bohr’s approach. In
that model, the microsystems would really pos-
sess some definite properties, some of which

could be unknown, and the list of the latter (i.e.,
of those that are definite and unknown) would be

determined by the nature of the instruments with
which the system will later interact.

In such a model theory let us consider again the
system constituted by (a) a source F emitting spin-
zero U+ V systems, (b) these U+ V systems, and
(c) a Stern-Gerlach magnet oriented along &; and
interacting with U at a time f,. According to the
foregoing rules, S¥(&;) and SV)(&;) have definite
values all the time after the emission time £, on
every U and V system and these values are merely
revealed by the measurement device. After {, the
proposition v; is persistent and Vis free as re-
gards spin. Assumptions 1 and 2 are satisfied.
Why is it then that the model violates the Bell in-
equalities (as it must since it reproduces the quan-
tum-mechanical predictions)? The reason is that
it violates assumption 3 (inductive causality), as is
obvious if at time /< /, we consider the ensemble
E, of “the Vparticles just considered” as a suben-
semble of an ensemble E of Vparticles similarly
produced but with no magnet present.

V1. DISCUSSION

One feature of the present derivation is that it
makes no use of the concept of a probability density
ina space of hidden variables.?® In fact, it does not
assume the existence of hidden variables. But it
derives it for the particular case of the spin-zero
U+ Vsystems, and only for that case, from the
specific assumptions made [these variables are
then the definite values of SY)(&;) and S"(§;) for
every ¢]. In that respect the derivation is similar
to, in particular, the very first derivation of the
Bell inequalities.? The difference is that the pre-
sent derivation is not based on a principle of “lo-
cality” or “separability.” In fact, it is based on
assumptions that sound plausible only because of
our implicit belief in some kind of a principle of
locality, so that the difference may appear slight.
It is significant nevertheless. The principle of lo-
cality commonly used for deriving the Bell in-
equalities can only be expressed in terms of ab-
sences of “influences,” and its relationships with
the principle of microcausality (so basic to field
theory) is therefore not entirély clear. It may be
hoped that by multiplying the investigations on the
possible origins of the Bell inequalities some new
insight will eventually be gained on these matters.
Since such problems as quark confinement focus
again the attention of the physicists on possible
action-at-a-distance physical effects, it is not
strictly inconceivable that such investigations
should be prolonged in more conventional physics.

Finally, a comment is in order as regards the
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relationship of the present derivation with that of
Stapp. In spite of the replacement of assumption 3
of I, which was of a contrafactual nature, by the
present inductive causality assumption, which is
not, it could be argued that the derivation de-
scribed here in Sec. IV is still based, at least im-
plicitly, on some other contrafactual assumptions
(see footnote 16). And since the Stapp derivation
is so simple, the question could then still be asked
" whether, compared to the latter, the derivation of
Sec. IV contributes any original information.

In our opinion, the answer is that it does, be-
cause of the fact that the contrafactual assumptions
used in the two derivations are of a different na-
ture. The simplest way to grasp this is to imagine
a refined species of Maxwell demons who could in

any circumstances measure any property a system
has, without in the least disturbing it. For such
demons the assumptions of Sec. IV are purely op-
erational, whereas those of Stapp’s derivation re-
main contrafactual in general. In that connection,
let it be stressed that assumption 3 of I would also
remain contrafactual for the demons, as shown by
the way in which it is used in I. This is the precise
reason why it is replaced in this article by induc-
tive causality.
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