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It is pointed out that some already-known inequalities (Bell's inequalities) and some new ones

presented here can be used to test experimentally the validity of a general conception of the

foundations of microphysics. This conception mainly consists in considering sets of propositions (having

the structure of lattices but possibly of non-Boolean ones) and in assuming that when a proposition is

true on a system S this constitutes an intrinsic property of S, which can be neither imparted to S
nor withdrawn from S as long as S is "isolated. " It is shown that if experiments of the type of those

used to test Bell's inequalities turn out to corroborate the quantum-mechanical predictions, such a result

could be used in order to invalidate directly the general conception just described. This is done without

reference to the general principles of quantum mechanics. More generally, our derivation does not

depend for its validity on assuming the truth of any particular physical theory abstracted by induction

from experimental knowledge.

I. INTRODUCTION

It is a truism that the advent of the modern
physical theories —relativity, quantum mechanics,
quantum electrodynamics, S matrix theory and so
on —has induced us to abandon many familiar in-
tuitive concepts. %'hen we are asked why, our
standard —and quite appropriate —answer is that
one may well be skeptical about the possibility
and usefulness of building up some alternative
theoretical framework that would (i) incorporate
and use these old concepts and (ii} be as success-
ful as each of our present-day theories in all their
respective domains.

On the other hand, a motivated skepticism is
far from being equivalent to a disproof. All the
successful theories mentioned above are built
upon elaborate sets of axioms that are justified
a posteriori „ i.e. , by the agreement between some
of their consequences and observed facts (and by
the absence of discrepancies}. But it should be
remembered that the appearance of two or more
theories using very different basic concepts and
yet accounting equally well for a given set of ex-
perimental data is not quite a rare event in phys-
ics. Hence the mere existence of the successful
theories referred to does not establish that such
and such a concept (or general view, or the like)
which they reject is indeed to be discarded once
and for all as definitely inadequate. For that rea-
son it is quite often asserted that in such a domain
we cannot make any absolute statement. Quite
frequently, it is even stated as an obvious truth
that the judgements we can form on these matters
are all dependent not only on the facts but also on
the general axioms of the existing theories.

Still, if not for our practice of physical research,
at least for our understanding of the whole subject
we would like to know for certain as many items
as we can concerning the adequacy or inadequacy
of given concepts or general ideas. In particular,
we would be satisfied if we could establish about
some given concept or idea not only that it is use-
less at present (i.e. , within the framework of the
present-day theories), but that it is false in that
it leads unavoidably to a contradiction with the
data.

For that purpose„we stress again that a mere
reference to the existing theories is not enough.
How then should we proceeds Obviously by trying,
as much as possible, to shortcircuit these theo-
ries; by trying to compare directly —or as direct-
ly as we can —the concept or idea with the experi-
mental facts.

Now i. our purpose is really to study one concept
or one particular idea —in isolation, so to speak—
then the above program is probably overambitious
and cannot in fact be fulfilled. But at least it can
be applied, as we show below, to a given set of

concepts and ideas (assumptions). The result of
course is weaker, since when we have shown that
this set of concepts and assumptions directly con-
tradicts known facts we can only conclude that one
or more of these concepts or assumptions must
be rejected, without being able to specify which
one. Still, if this set contains only notions and
ideas that are all deeply ingrained in our minds,
even this weaker result is interesting.

In this paper a set of concepts and assumptions
is introduced (Sec. II) that is already considered
by most experts as not being compatible with

quantum mechanics, at least in its most common-
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ly accepted interpretations. The question we are
interested in is: Are we sure that this set is ab-
solutely unacceptable, i.e. , that it will remain so
in any future theory or interpretation thereof? It
is shown that we can answer that question posi-
tively, provided only that (a) we consider as sig-
nificant a few recent experimental results that
agree with some quantum -mechanical predictions,
and (b) we accept the conjecture according to
which such an agreement will persist when the
experiments alluded to are suitably refined (in
technically foreseeable ways}.

While the proof of the above statement is the
main purpose of this paper, a subsidiary purpose
is to supplement Bell's inequalities'" with some
new ones, and also to show that, when applied to
special correlation effects, all these inequalities
hold within a theoretical framework that is con-
siderably larger than the one of the hidden-vari-
ables theories. In particular, a by-product of our
method for deriving such inequalities is to make it
clear that they have an already knox)n large domain
of application, which indeed covers the whole field
of what can be called the "classical" probabilities
Iby this expression we mean the set of all the the-
ories in which elementary events (i} exist and

(ii) are all such that several propositions can be
formulated that are each necessarily true or false
when applied to them]. But it should be stressed
that the main purpose of this article is definitely
not to establish new inequalities nor indeed to put
forward any new physical result. Rather it is to
study a new pyoblern, which consists in ascertain-
ing directly whether or not a given set of general
ideas and concepts is compatible with known facts,
independently of any formalism.

Some of the views presented here were already
put forward —in a provisional form —by the author
at the 1972 Trieste conference on the physicists
conception of nature. 4 They are reformulated here
since they fit naturally with the context.

II. CONCEPTS AND ASSUMPTIONS

The set of concepts and assumptions that we
want to falsify directly —without reference to
quantum mechanics —is the following one.

As regards the concepts we merely assume that
we can use the words system, isolated sp'stem,
and proposition in the usual way. A silver atom is
a system of a given type. A voltmeter and an
electron are systems of other types. Provisional-
ly at least, we consider as isolated any system
lying arbitrarily far from or outside the light
cones of all other systems. Propositions are de-
fined operationally. ' We define a proposition a
pertaining to a type T of systems S by specifying

the instruments of measurement corresponding to
it. We also define the orthogonal complement a'
of a by specifying that it corresponds to the same
instrumental device as a and that its measurement
is said to give the value yes whenever that of a
gives no, and conversely. '

These concejts cannot be completely separated
from the assumptions that follow (to some extent,
the distinction between assumptions and concepts
is artificial in this context).

One of the ideas concerning physical systems
that is most deeply ingrained in our general con-
ceptions about nature is that, in some cases at
least, some propositions are true about these
systems, and that when this is the case, it is so
even if nobody is actually going to try to become
conscious of the fact. Let us formulate precisely
this idea in the following way.

A. ssumPtion l. It is meaningful to associate to
any proposition a defined on a type T of systems a
family F(a) of systems S of the type T, F(a) being
defined by the two following conditions: (i) The
systems S that belong to F(a) are those and only
those that are such that if a were measured on S
by any method the result yes would necessarily be
obtained, and (ii) the fact that a given S belongs to
F(a) is an intrinsic property of S (i.e. , it does not
depend on whether or not S will interact with some
instrument devised so as to measure a).

Remark l. Assumption 1 apparently conflicts
with at least some of the conventional interpreta-
tions of quantum mechanics. In particular, it
seems difficult to reconcile it with some of the
views of the Copenhagen school concerning the
role of the instruments and the inseparable whole-
ness they are supposed to constitute with the ob-
ject. On the other hand, this particular aspect of
the Copenhagen interpretation has always remained
somewhat controversial, even in the opinion of
some physicists who consider themselves as being
substantially in agreement with the conception of
that school. Indeed, some of the latter physicists
seem to have hoped to be able to restore the valid-
ity of our assumption 1 by going to a non-Boolean
logic, ' or to a non-Boolean calculus of proposi-
tions. ' One of the points we expect to make in this
paper is that such hopes cannot be maintained,
and that this is true quite independently of any
theory (unless some of the assumptions below are
dropped; see Sec. V).

Remark 2. The possibility that systems of type
T should exist that belong neither to F{a)nor to
F(a') is clearly not excluded by assumption 1, nor
is even the possibility that some systems should
belong to no family of that sort at all. In particu-
lar, we do not assume that if a is not true it is
false. Indeed, we do not even define a meaning
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for the latter epithet applied to a proposition bear-
ing on a system.

Remark 3. No determinism —neither manifest
nor hidden —is postulated.

Definition 1. Iff (if and only if) S belongs to
F(a), a is said to be true on S.

Definition 2. Let a system S be isolated between
times t, and t, . a is said to be persistent on S
between t, and t, iff the condition that a is true at
time t, entails that it is true at time t„ for any t,
and t, satisfying

AssumPtion Z. Let t, & t, & t, & t, , let S be iso-
lated between t, and tb, and let a be persistent
between t, and t, . Then if a is true at t„ it is
also true at t, .

Remark &. Assumption 2 is again one of those
that seem to be incompatible with at least some
interpretations of quantum mechanics, although
this again is controversial. But anyhow it is an
assumption that seems quite natural in view of
definition 2 and in view of our general opinion that
in such matters some kind of time-reversal prin-
ciple should hold.

Assz~mPtion 3. Let C be a set of general experi-
mental conditions and let C' be conditions obtained
from C by changing only the experimental devices
with which S &gill interact after time t. Then if C
entails that a is true on S at time t, C' also en-
tails that a is true on S at time t.

AssurrzPtion 4. If a is true on S, then it is also
true on any system S+S' of which S is a part.
Conversely, if a is a proposition defined on sys-
tems of the type of S, if it bears on S, and if it is
true on S+S', then it is true on S.

III. CONSEQUENCES

Let us consider the experiment discussed by
Bohm, ' Bell, ' and others. ' A spin-zero particle
decays at time t, into two particles U and V of
equal spin S by means of a spin-conserving inter-
action. Let Ie;} be unit vectors defining directions
in space. Let v, be the proposition "S '(e;) = m"
and let u; be the proposition "S~ '(e;) = —m, "where
S '(e;) is the projection along e,. of the spin of
particle ~ (~= U or V). Propositions u, and v,.

can be defined by means of suitably oriented
Stern-Gerlach devices. It is then apparent that
v,' is the proposition "S' '(e;) c m, " and similarly
for u,'. On the other hand, if we w'ere to measure
u; and v;, in any order, we would always get
either two answers yes or two answers no. This
can be considered as a definition of the statement
that the composite system U+ V has total spin
zero (all measurements are assumed here to be

"ideal" ), and we can consider it as an experimen-
tal fact that systems U+ V prepared as stated
above do have spin zero. Combined with assump-
tion 1, the fact that upon measurement of u; and z:;

we would certainly get either two yeses or two
noes implies that if the composite system U+ V

belongs to F(zi;} it also belongs to F(v;), and con-
versely.

Let us consider the case in which, at a time
u; is measured on U by means of some in-

strument A. Let us assume first that the result
yes is obtained. Then, for the reason already
mentioned it can be stated with certainty that a
measurement of v; on the corresponding system
V would also give the result yes. According to
assumption 1, V therefore belongs —after time
t,—to family F(z;). Since z; is a persistent prop-
osition on V from t = t, to t = ~, assumption 2 then
has the consequence that that particular V belongs
to F(u;) also at any time t, satisfying t, & t, & t, .
Assumption 4 then shows that also the composite
system U+ V of which the considered V is a part
belongs to F(z;}. Because of the strict spin cor-
relation established at time t, it thus also belongs
to F(u;).

Let us now assume that the result of the mea-
surement made on U at time t, is no. Exactly the
same argumentation then leads us unavoidably to
the conclusion that in that case the composite
U+ V system belongs at time t, to families F(u,'}
and F(z,').

Instead of considering one composite system
U+ V only, let us now consider + such systems,
all identically prepared and all of them subjected
to a measurement of u; at t, . For each of them
the result of that measurement is necessarily yes
or rzo so that each of these systems necessarily
falls into one of the cases considered above. The
previous argument therefore shows that at time
tl ~ under the conditions of the experiment and if
assumptions 1, 2, and 4 are correct, the com-
posite systems U+ V all belong ei(1zer to F(u;) and
F(v;) or to F(uI) and F(v,'). If we now also take
assumption 3 into account, we must conclude that
this situation zvould also hold if the measurement
hitherto assumed to be made on U at time t, were
not made at all, or were replaced by some other
one. But then the same argumentation could be
repeated over again with reference to a new pair
u, , v, of propositions. Hence the conclusion is
that in the special case of the decay considered
here we have to deal with a situation in which it
so happens that any composite U+ V system

(i) must belong either to F(v;) or to F(v,'),
(ii} must belong also to F(u;} in the first case

and to F(u,') in the second one, and
(iii) belongs as a matter of fact to an infinity
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of such families at the same time since e; can be
chosen in an infinity of ways. We may question
these conclusions, but the point is that we may not
do this without giving up one or several of the as-
sumptions 1, 2, 3, and 4.

Remark 4. This argumentation closely parallels
the one developed by Einstein, Podolsky, and
Rosen" in order to show tha, t quantum mechanics
is incomplete. But it is used here with somewhat
different assumptions and for a different purpose,
since our objective is not to test any assumption
(e.g. , completeness) concerning the axioms of

quantum mechanics. As a consequence —in con-
tradistinction with what was the case as regard
the article quoted above —the results obtained in
this section do not yet constitute a difficulty as
regards the assumptions we want to test since no
contradiction exists between them and the experi-
mental facts that are used here as reference. In
particular, they are fully compatible with the ex-
perimental facts usually described under the head-
ings "the spin components along different direc-
tions are not simultaneously measurable. " Ad-
mittedly, the results in question imply for instance
that if u; were measured at i, on some system U

the answer yes &mould be obtained. But it asserts
nothing about any actual sequence of such rneasure-
ments (concerning which the problem of the per-
turbation created by the first instrument would
have to be taken into account) and, what is even
more significant, it does not give us any opera-
tional means for effectively sorting out from the
statistical ensemble a system U possessing these
features. Indeed, under these circumstances it
would even seem at first sight that the special
character endowed to the considered composite
systems U+ V by our assumptions has no observ-
able implication whatsoever. If this conclusion
were correct, it would reinforce the view that
sets of assumptions of this sort are "legitimate
but metaphysical. " But as we show below, a com-
plete elucidation of the bearing of the Bell-type in-
equalities must lead us —on the contrary —to give
up this view since such inequalities (i) can be
falsified and (ii) are consequences of the results
derived directly in the present section from the
considered set of assumptions.

Remark 2. Some formulations (see, e.g. , Ref.
4) introduce the notion of atomic ProPositions.
When a is atomic then, if x is a proposition

@(:.)('(: a ~ x = P or x = a,
it might seem that the results of this section pre-
clude the possibilities of u; or v, being atomic on
U or V, respectively, since the assertion x="u;
and u,

" (which was shown to hold on some U's)
entails u, while being different from p. But the

conclusion does not follow since —as pointed out

in the foregoing remark —assertion x is not oper-
ational and therefore is not a proposition.

On the other hand, this makes clear a point that
could be important for the development of the the-
ories gathered under the names of "quantum logic"
or "quantum calculus of propositions. " This point
is that any such theory that implicitly or not makes
use of our set of assumptions implicitly contains
"built in" significant assertions —such as s above—
that are different from propositions.

Remark 3. Admittedly, the argumentation of
this section implies that in the case in which as-
sumptions 1 to 4 are made, the time evolution of
the particular systems U and U studied here must
be considered as being more "deterministic" than

is assumed in the conventional formulation. This
does not contradict remark 2 of Sec. II since these
supplementary deterministic features emerge here
as a consequence, true only for special systems,
not a.s a postulate of general validity.

IV. INEQUALITIES

The semi-positive-definite character of the
probabilities (that they cannot be negative) has
many consequences —some of which have perhaps
not yet been completely exploited; in particular,
in conjunction with strict correlation phenomena.
Here we derive Bell's inequalities and some gen-
eralizations thereof as simple, nay almost trivial,
consequences of that semi-positive-definiteness
(these inequalities consequently apply for a wide

range of physical theories and phenomena, includ-
ing macroscopic, classical ones) ~

Through the use of the concepts of measure.
conditional probabilities. and so on (and of the
corresponding shorthand notations), the following
derivations could easily be formulated in concise,
abstract terms. However, this would conceal,
rather than reveal, their intrinsic simplicity and

(what is more important) their corresponding
generality. Let us instead use the very simple
notion of a number of systems in an ensemble.
The number of elements in a statistical ensemble
is an inherently non-negative quantity; and the
number of elements of the union of two disjoint
ensembles is the sum of the numbers of elements
of the two constituents. These two trivial but in-
disputable statements are essentially all we need„
and by formulating them in such a concrete man-
ner we hope to show in a convincing way that the
basis of the following deduction is extremely diffi-
cult to re ject.

Let us then consider an ensemble F of system V

of a. given type T Let ~~ v, ~ ~ v, ~ v„). (v == 3) be
a set of propositions I( i', v', ~ ~ ~ t„') being the
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set of their orthogonal complements] defined on
systems of type T and such that every element of
E belongs for any value of the index i either to
F(U, ) or to F(o,'), F{v;)and F(v,') being the families
of systems defined in assumption 1. In classical
physics, ensembles E satisfying such conditions
can be constructed in an extremely wide variety
of cases {as already mentioned in the Introduction).
But even when propositions of a type more general
than the classical ones are considered, it may
happen (in particular cases) that such ensembles
can be considered also. An example is provided
by the ensemble F-=E~ of the systems V considered
in Sec. III. This, as shown in Sec. III, is a con-
sequence of the set of assumptions introduced in
Sec. II. Hence the following considerations also
apply to F~ as soon as the assumptions 1 to 4 of
See. II are made, which we assume to be the case.

Let us choose an approach originally used by
Wigner' in order to deal with the hidden-variables
problem: To each element V of F- let us associate
a sequence g, ~ ~ ~ g, ~ ~ g„of dichotomic quantities
0, which have the values +1 {denoted +) if V be-
longs to I' {v;)and —1 (denoted -) if V belongs to
F(v,'}. Let us first consider three v; only, and
then let

&(g„g„g,)
be the number of systems V in E that have the
specified values of g„g„g,. Although we cannot
know n, it has a well-defined value according to
our assumptions {supplemented with the considera-
tions of Sec. III) in all the cases we consider.
Moreover, in all these eases

contains no term with g& =g~, hence has only terms
with g„= -g;, and can therefore be rewritten as

1 —M(i, f ) =N ' Q (1 —a;v„)n(o „v„v,)
O ~) O2, fJ3

also contains no term with g, = g; and can be re-
written —with the same convention —as

1 —M(i, k)=2N ' P n(o„v„v, ). (6)

In Eqs. (4) and (6) the summations bear on the
same terms, but in (6) all these terms are posi-
tive whereas in (4) some of them are negative.
Hence {2)follows (Q.E.D. ).

Since any composite system U+ V that belongs to
F(v, ) also belongs to F(u;) as we have shown,
M(i, j) can be known experimentally. Indeed

M(i, ~) = -P(i, ~) J

where P(i, j) is the mean value of the (observable)
product of S-,' and S'-'. Equation (2) therefore
gives rise to Bell's inequalities':

IP(i, i ) P(j, k)l - -I+P(k, i).
Proposi tion 2.

8)

M(i, j) —M(j, l)=2N ' g a, a, n(o„v, v, ),
Oi O2 "3

(4)
~l

the symbol M meaning that all the terms in which

g, =g; must be excluded from the summation, and
only these. Similarly,

n(g, ,g„g, ) = N, M{12)+ M(23)+ M(31) ~ —1. (9)
OI, O2, O3

and

—1~M(i, j) & I

where N is the total number of elements of F.
(N- ~).

Let M(i, j) (i, j = 1, 2, 3) be the mean value on E
of the product g, g, so that, of course

Proof The left-ha. nd side —which we designate
by K —can be written as

K=N ' Q (o,a, +v, o, +v, o,)n(v„a„v,),
OI, O2, CJ3

(10)

K=(2N) ' P [{g,+a, + g, )' —3]n(g„a, , g, ).
OI, O2, OP

M(zf g) =X-' g, a, n(a„a„g,}.
OI, O2, O3

Proposition

I M(i, J) —M(j, k)l -= 1 —M(k, i) for i w j ~k. (2)

Proof. The quantity
K~ —N ' g n(g„v„v),

cJ I,
(12)

Since 0, =+ 1, the quantity inside square brackets
can only take the values + 6 (for g, = g, = g, ) and
—2 (otherwise). Hence

M(E, ;) —M(), a)

Oi ~ O2 O3
g, (v; —g„}n(a „v„a,) (3).~ll

where M is a summation extended to all the terms
for which not all three g's are equal. Obviously~ll
M ~ ~ ~ ~ N, and (9) follows. For the observable
quantities P(i, j)J (9) gives the new inequality
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P(12) +P(23)+P(31) ~ 1. (13)

Pe'p1 ark 4. In the special but important case
(used above a,s an example) in which U and V are
equal-spin particles in a state of zero tota. l spin
(and in the similar experiments using photons), it
can be shown that (13) combined with (8') is equiva-
lent to an inequality derived by Gutkowski and
Masotto" and relating with one another not the
P's but the corresponding numbers of systems
(probabilities). On the other hand, the Gutkowski-
Masotto inequality is based on the fact that the
probabilities of the results g,. = ~ 1 are equal. Ex-
periments could probably be imagined in which
such an equality would not hold, but for which {9)
[or (13)j would still be valid. "

Remark 2. The effect of the strict spin correla-
tion between U and V is twofold: (i) Together with

assumptions 1 to 4, it integrates any ensemble of
systems V to the class of those any element of
which belongs either to F(s, ) or to E(v', ), and (ii)
it has the effect that the quantities M(i, j) become
observable, by means of the P(i, j).

ProPosition 3. Let

by .i. , y, z, and t on these grounds and that can
a Priori be independent from one another are

L-O, y~0, x~0.
r+ y+z+$=1

)=0, (16)

(17)

—2 «M(12) + M(13 ) + M(24) —AI(34) «2 . (16)

Hence the only such inequalities that the additive
and the semi-positive-definite nature of the enti-
ties "numbers of systems" can generate for linear
combinations of A, B, C are those derived from
(16) and (17) by substitution. The last three in-
equalities in (16) give inequalities (2) {Bell's in-
equalities). Equation (17) and the first inequality
in (16) give inequa, lity (9). The first inequality in

(16) gives no information. It follows that the in-
equalities (2) and (9) exhaust the list of the inequal-
ities satisfied by linear combinations of the M(i, j)
as a consequence of additivity and semi-positive-
definiteness.

Proposition 4. Let us consider a fourth unit
vector e, and the corresponding proposition v, .
Then

Nx =n(+, +, +)+n( —,—,—) ~ N,

Ny =n(+, +, —)+n(-, —,+) «x,
Nz=n(+, —,—)+n( —,+, +)~N,

Nl=n(+, —,+)~n( —,+, —) «x.
Then

(14)

~l ~ll
Proof. Let the symbols ~ and ~ denote sum-

mations over the possible values of the g's from
which the terms having, respectively, g, =- g, and

c, = -o, are excluded. Let the middle term in (16)
be denoted by B. Kith obvious notations 8 can be
written as

A = —,'[1 —M(12')j =@+i,
B = —,

'
[ 1 —M( 13)) = y + z,

C = -', [ 1 —M(23)) = y+ /,

(15) O I, a2, n3, rI~

[u, (~, + o, }+o, (&, —&.)1

X n(g I) g2) g~ g~)

or 8=N 2 Q (7(I)2n(O'g, o2, (7p, (T@)
t

y= ~{B+C-A), z =,'-(A+B —C),

t = -,'-(A + C B) . —

The only inequalities (or equalities) satisfied Hence

l
+ 2 0~g2 n(gl)g2„g3)gq)

I

—2N ' g'n( )+ n( ~ ) &B&2N-' g n( ~ )+ P n{ )

~l ~ll

and therefore (since the ensembles 2 and E are
disjoint)

-2 a 2 (Q.E.D.).
Inequality (18) and the inequalities derived by
permuting the symbols give rise to the so-called
generalized Bell's inequalities between the P(i, j).
These inequalities were first derived within the
hidden-variables conception by Clauser, Horne,
Shimony, and Holt. '" Within that conception

they hold true even if a strict correlation does
not hold between U and V in the sense in which
this concept is introduced in Sec. III. On the
contrary, if we only assume the validity of the
set of assumptions listed in Sec. II) these in-
equalities are only valid in the cases in which
strict correlations hold (i.e. , in the case of a.

total spin zero in our example).
More generally, let us now consider the case

in which m distinct propositions n; are taken into
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account. I.et us first consider the case in which

m is odd. Then we have the following.
Proposition 5.

g M(i, j}~ —,'(1 —m}, m odd

and correspondingly

(20)

M(i, j) ~ —;-uz. (22)

The corresponding inequality for the P(i,j ) is
unlikely to be falsified by experiments made on
the U+ 1' systems such as those considered in
Sec. III since —contrary to (20}—it is always
satisfied by spin--,' systems obeying quantum me-
chanics (q.m. ). This follows from the fact that
P(i, j ) can then be written

Proof The. left-hand side of (19}is

(2X) ' g [{cr,+ ~ +a )' —m]

so that

g E' (i, j) = —2 '[(e, + ~ ~ ~ + e )' —rrr] ~ -', &rr,

&n(0„. . . , cr ). (21} (23)

The smallest term among those written inside the
square brackets in (21) has value 1 —m. (19)
follows.

When the parity of m is not specified, the in-
equality obtained by this method is less stringent.
It is

the equality being realized for e„+ ~ ~ ~ + e = 0.
On the other hand, the derivation of inequality

(22) can be applied to the more general case in
which M(i, j) is the mean value of the product
X, X, of two random variables. Denoting by g,
the values taken by the X; we have

P M(i, j)=Ei P cr;cr, (ar„r. . . , )a,
CJI, ~ ~ ~, Gm 4&j

= (2X)
"1 ~ ~ ~ Om

[(a, + +a )' —(a, '+ +a ')] n(cr„, . . . , a ),

and hence V. DISCUSSION

Q M(i, j) ~ ——,
' Q M(i, i ), i, j = 1, . . . , m.

(24)

~ ~ ~

I—-„. m, i, j =1, . . . , )rz (25)

between the correlation coefficients

Inequalities (24) and (25) belong essentially to
ordinary probability theory and they should be
used as such. Inequalities (2), (9), {18), and {19)
can also be used within the same framework.
When the X; can be considered as constituting
together a stationary stochastic function of the
index i, inequality (25) reflects the well-known
fact that any correlation function of such a sto-
chastic function is positive-definite.

In the case in which the X, are centered and have
equal root mean squares, (24) reduces to the in-
equality

Let us carefully distinguish between, on the one
hand, the verifiable predictions of quantum me-
chanics (which are unambiguous in every case'I
and, on the other hand, both its formalizations
and its conceptual interpretations (which are
varied and or controversial' ). Among the veri-
fiable predictions let us consider in particular the
eleuzentary Uerifzable qzzcvztz. zzzz P& cali ctions, which
we define as the predictions of quantum mechanics
that bear on systems composed of a small number
of stable particles. If we believe that the elemen-
tary verifiable quantum predictions are all correct
(even with respect to idealized instruments)„ then
the content of the present article forces upon us
(with no commitment to a particular formalism,
or to a particular interpretation) the conclusion
that the set of the concepts and assumptions listed
in Sec. II cannot be kept since such inequalities
as (S), (13}, and —more generally —(20), that fol-
low from these concepts and assumptions, are
violated in some cases by the said verifiable pre-
dictions. Such cases include those in which the
systems U and V considered in Sec. III are spin--,
particles and in which the unit vectors e,. are
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chosen in some special ways. This conclusion
was shown by Bell' as regards inequalities (8).
As regards inequalities (13) and (20), it follows
for instance from the fact that the symmetrical
configuration Z;e; =0 corresponds to the equality
sign in relation (23) and hence to a violation of
(20).

If we do not take it for granted that all the ele-
mentary verifiable quantum predictions are true,
then we must rely upon direct experiments. Hence
it must be recalled here that such experiments seem
to be quite feasible. In order to test the localized
hidden-variables assumption, experiments have
indeed already been made" "that can be inter-
preted as giving significant indications also as re-
gards the present problem. Others are in pro-
gress. " Admittedly it is technically difficult to
build up tests of inequalities (8), (13), or (20)
that would be rigorous in that they would rely on
no supplementary assumptions. But these diffi-
culties are certainly not considered as insuper-
able. In this connection it would of course be
suitable to vary the tests and this is why we sug-
gest checking the "new" inequalities, such as (13)
and (20), also. Independently of that, it should be
pointed out that the set of experiments that are
suitable for testing the hidden-variables hypothesis
does not coincide exactly with the set of experi-
ments that are suitable for testing the set of as-
sumptions under discussion in the present article.
For example, the hypothesis that hidden vari-
ables exist can be tested (by using the gener-
alized Bell's inequalities already mentioned) even
in the case in which the correlation between the
spins of U and V is not strict in the sense in which
this concept is used in Sec. OI above. On the con-
trary, for testing the validity of the set of assump-
tions listed in Sec. II the strict correlation effect
is essential. This can also be done with photons,
as in Refs. 14, 15, and 16. For the reasons al-
luded to above, the now available results only give
indications on that point. Hence, all that can be
said at present is that if some of the data reported
in Ref. 15, for instance, could be taken at face
value (i.e. , if we could overlook the fact that their
interpretation really requires supplementary
assumptions), they would contradict the conse-
quences we have derived from the said set.

It may be noted here that the condition that the
spins of U and V should be 2 or that U and V
should be photons is by no means necessary for
the validity of the considered tests. "

As a last remark bearing on experimentation
let it be pointed out that when the considered
strict correlation takes place between (pseudo-)
vectors —as in the example studied above —the
experimental devices that serve in testing in-

M(i, j) = X-'[n(++ )+ n(- —)

—n(+ —) —n( +)], - (26)

is used, where + means "passes the polarizer, "
—means "fails to pass, " and n(o„v, ) are numbers
of photon pairs. The transition from (9) to one of
the Bell's inequalities (2)—as well as between the
latter —then corresponds to exchanging "passes"
and "fails to pass" for one of the two photons, that
is, to an invariance with respect to rotations of
—,'m of the polarizers.

For the rest of the discussion let us assume as
a working hypothesis that the experimental results
have confirmed or will confirm the observable
predictions of quantum mechanics, so that the set
of concepts and assumptions of Sec. II is falsified.
The questions are then: (i) What does this imply
as regards the existing approaches of quantum
mechanics, and (ii) more generally, by what
other assumptions can we replace the set under
discussion? On these two questions we formulate
here but a few remarks.

(i) Question of the approaches to quantum me-
chanics. As regards this point, the main interest
of the present analysis is probably that it dis-
criminates between several interpretations of
conventional quantum mechanics and that it ques-
tions some of them. In particular, it discrimi-
nates between the Copenhagen formulations and at
least some versions of what could be called for
short the axiomatical-logical formulations. As

equality (13) can be the same as those tha. t are
used for testing inequalities (8). This is a con-
sequence of the fact that if the direction of one of
the vectors e; is inverted, two of the P(i, j}change
sign and (13}becomes identical to one of the in-
equalities (8). It does not mean that (13) is equi-
valent to (8). For example, in the symmetrical
configuration e, + e, + e, =0 inequality (13) is vio-
lated by the quantum-mecha, nical P(i, j) while (8)
is not. Nevertheless, the fact just mentioned—
together with inequality (13) proved above —has
the straightforward consequence that only un-
oriented directions in space are important. Given
three such directions, the question of whether the
system of inequalities (8) and (13) is violated or
not by the data does not depend on the orientation
chosen on any of these lines in order to label as
yes the response of the instrument oriented along
this line.

When photons are used, then of course the in-
equalities (2), (9), and (19)—i.e. , inequalities in-
volving the M's —are to be used instead of those
involving the P's; this being true if the conven-
tional definition of the measured quantities, name-
ly
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Al Q2 and ot2 Al ~ (28)

Next, they denote by a =in) the class of all such
yes-no experiments and call a a proposition. Fi-
nally the quoted authors observe that a is true if
any (and therefore all) of the n ~ a are true and
decide that "if the proposition a is true we shall
call it a property of the system. "'

Now, the question is: When we introduce in this
way the notion of propositions defined on systems,
can we avoid making assumption 1 of Sec. II? It
seems that the answer is no. Since the fact that a
is true is considered as a property of certain sys-
tems, we may call F(a) a family of such systems;
and then the fact that a given system S belongs to
F(a) is (this is a tautology) an intrinsic property
of S, independent of whether S will be observed
by such and such an instrument. The only con-
ceivable doubt we might have would be in connec-
tion with the definition of truth. As w'e have just
seen, the quoted authors use the future tense for
defining the truth of a yes-no experiment Q. (they
write "@ill give the result yes"}„whereas in our
assumption 1 the conditional (would} was used. If
this use of the future were to imply that a is true
only in the cases in which an instrument for mea-
suring e is actually set up (and ready for the mea-
surement), then we would again have to do with a
theory in which, as in Bohr's conception, the

mentioned in the Introduction, the conclusions we
have reached are in no disagreement whatsoever
with the Copenhagen interpretation, simply be-
cause this interpretation does not postulate the
entire set of assumptions that has been falsified
above. Indeed that interpretation discards as-
sumption 1, since (as Bohr in particular has re-
peatedly stressed} according to it, microsystems
do not have any properties of their oun (which
means properties that would be independent of the
experimental arrangement, including the apparatus
with which these microsystems u ill be observed).

On the other hand, some of the axiomatical-
logical formulations do involve assumptions that
are strictly equivalent to our assumption 1. For
the sake of definiteness let us, for example, con-
sider the approach of Jauch and Piron. ' These
authors first define "yes-no experiments" and
decide to "say that the yes-no experiment e is
true if a measurement of n will give the result
yes with certainty. " Then they accept it as an
empirical fact that certain pairs Q. , P of such
experiments have the property

n true ~P true,

which they write n&P. They call "equivalent" two
yes-no experiments n„+, having the properties
that

microsystems have no properties independent from
the complete experimental environment; we would
thus avoid making assumption 1~ Unfortunately,
if we understand the use of the future instead of
the conditional in such a restrictive way, (i) we
come in conflict with the sentence quoted above
that a (and therefore n also) is "a property of the
system, " and (ii) we get into difficulties in giving
a meaning to relation (27): If the statement "o.
true" has a meaning only when a complete experi-
mental device is present that is designed so as to
measure n in the future, then how can this state-
ment imply "P true, " an assertion which is related
to some other, quite different experimental ar-
rangement?

As a result of this discussion we are tempted to
believe that the very method by means of which
the quoted authors introduce the concept of a prop-
osition makes it impossible for them to avoid
making, effectively, assumption 1. On the other
hand, we also believe that this same method is
entirely in the spirit of the general axiomatical-
logical approach to the foundations of quantum
mechanics and that, far from being unduly specif-
ic, it has —on the contrary —the great merit of
making explicit what was implicit before it. In
particular we believe that the said axiomatical-
logical approach is inherently based on the idea
that, somehow, even microsystems have proper-
ties of their own, albeit these properties are de-
scribed by propositions not obeying the usual
Boolean logic. But if so, then it is the validity of
this entire approach which is questioned by the
present analysis, unless it could be shown that it
does not postulate implicitly the validity of as-
sumptions 2, 3, and 4, or unless the very exis-
tence of strict correlations is doubted, see, e.g. ,

Jauch in Ref. 9.
(ii) Question of the alternative assumptions.

Quite independently of the whole controversy that
is still continuing on the foundations of quantum
mechanics it follows from the present analysis
and from the experimental results"" (if taken at
their face value) that we must abandon one at
least of the concepts and assumptions of Sec. II
and, moreover, that we must do so even in a
simple case, in which S is a stable particle and a
is a (so-called} constant of the motion whenever S
is isolated.

If the usual notion of a system is kept, it seems
rather artificial to give up assumption 4 only.
Analyses of the Einstein, Podolsky, and Hosen
(EPR) problem that seem to proceed along this
line are occasionally put forward, but as a rule
they implicitly deny some other assumptions of
the set also.

As regards assumption 3, there exist some
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subtle ways of violating the principle it refers to
while keeping all the other ones and producing no
observable effects of the future on the past. It is
well known that deterministic theories can be
found that violate none of the predictions of quan-
tum mechanics; they are of the contextualistic"
nonseparable variety. But their nonseparability
(i'l leads to no observable violation of the principle
of finite-velocity propagation of signal. s and (ii)
can be accounted for as a consequence of a retro-
active effect; in the phenomenon described in Sec.
III this effect would consist of a retroactive in-
fluence of the measurement made on U at time t,
on the parameters describing the state of the sys-
tem U+ V at time t, . Up to now, however, the
scientific community seems to be reluctant as
regards the idea that the future could act upon the
past, even in a way that is not directly observable.

A real violation of assumption 3 is therefore un-
likely. But should we not consider —as a conceiv-
able solution —the possibility that assumption 3
(and perhaps also assumption 2), while being cor-
rect, simply would not aPPly in the context of Sec.
III where it was used? Conceptually, this indeed
is possible. To understand why, let us consider
again the argumentation of that Sec. III, but let us
observe that all the instruments of measurement
presently available are such that in practice they
must be completely fixed long before time t„also
as regards the direction e; along which they mea-
sure the spin. Hence it is conceivable that they
might influence necessarily the decaying object
even befoxe t„ through forces —or more generally
"influences" or "interactions" —of an unknown

type but that would not violate the law of finite
propagation of signals. Admittedly, it is also
conceivable that these unknown influences would

operate precisely in such a way as to restore the
quantum -mechanical correlation. However, if (in
accordance with the quantum-mechanical result)
it is believed that the latter correlation law does
not depend on the distance between U and V, then
the explanation presently considered implies that
somehow the said unknown influences do not vanish
when the distance increases without limits. Again,
this sounds like a most unlikely assumption and
like one that, if true, might entail important re-
strictions to the use of the very notion of an iso-
lated system. Moreover, it should also be noticed
that an explanation of this type, if it were taken
seriously, would imply the idea that the quantum
principles are relative to the presently available
apparatus. It seems that in some cases they must
fail if it is assumed that the elementary, verifi-
able quantum predictions would apply even if hy-
pothetical "versatile" instruments were used. By
"versatile" we mean instruments that could be

fixed a.long e, after t, : There is no known principle
of physics that excludes a Priori the possibility of
building such instruments.

The idea that assumption 2 should be violated is
somewhat less unattractive than those considered
up to this point. At any rate it does not sound
completely unfamiliar to many of the theorists
who have studied the foundations of quantum me-
chanics. But it partakes of similar difficulties.
And the main question is: Should it be abandoned
alone? If it is, then a strange kind of irreversi-
bility is thereby introduced in the fundamental
laws of physics. Hence it may seem more natural
to abandon also assumption 1.

Finally, there are two main possible substitu-
tions for the set of assumptions 1 and 2. One of
them introduces the idea of a nonseparability
existing between the microsystem and the experi-
mental arrangement (including the instruments
with which the system will /@ter interact). This
seems to have been Bohr's view and the essence
of his answer to the EPR criticism. Along with
many satisfactory aspects, such a view has the
well-known but nevertheless surprising feature of
expressing the laws of the microworld by using
approximate classical concepts referring essen-
tially to our experience of the macroworld. More-
over, it also violates the general principle lying
behind assumption 3. The other possible substi-
tution to assumptions 1 and 2 offers a way of
avoiding this: It introduces a nonseparability be-
tween microsystems that have once interacted. "
That type of nonseparability is closely parallel to
the nonseparability of the quantum-mechanical
wave function. It is the (sometimes implicit)
common feature of two or three otherwise differ-
ent descriptions: the one that introduces hidden
variables in a deterministic"' "but contextualistic
and nonseparable theory, the one that makes con-
sciousness an active agent, " "and finally —if
it can be proved that it does not reduce to one of
the latter two —the description that makes objec-
tive the entire wave function of the universe. ""

VI. CONCLUSiON

For the sake of convenience let us call the fol-
lowing principle the principle of separability', as
formulated by Einstein: If S, and S, are two sys-
tems that have interacted in the past but are now

arbitrarily distant, "the real, factual situation of
system S, does not depend on what is done with
system S, which is spatially separated from the
former. "' This principle can be somewhat wid-
ened —or understood in a broad sense —so as to
mean: No finite influences can propagate arbi-
trarily far away. Alternatively, it can be given
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the more restrictive sense that there are no space-
like propagations of influences. The result of the
foregoing analysis can then be summarized as
follows: (a) If the principle of separability is
assumed to hold in its broad sense, experimental
tests of the set Z of concepts and assumptions
listed in Sec. II are in principle available. (b)
Their results are predicted to be negative by con-
ventional quantum mechanics, and there are in-
deed preliminary experimental indications support-
ing these predictions. (c) Quite independently of
the assumption made in (a), Z seems to be incom-
patible with all the "verifiable" predictions of
quantum mechanics if these are extended to mea-
surements with "versatile" instruments. Finally,
(d) the most likely substitutes to the set Z would

imply that the principle of separability is false,
even in its restrictive sense. Hence this principle
can hardly be expected to hold except if there exist
either large-distance violations of the elementary
quantum predictions or necessarily operating,
finite influences propagating arbitrarily fa.r (in
which case it can hold only in the restrictive
sense, of course}."

Superficially such a conclusion seems neither
surprising nor new. After all, the nonlocality-
in the general ca.se —of the many-particle wave
functions is quite obvious. It finds its best illus-
tration in the Pauli principle (which also questions
the possibility of individualizing systems in the
way separability would have it}. Nay, even classi-
cal physics admits the existence of correlations
between spatially separated events and hence of
sudden changes of the probability distributions,
induced by distant measurements. On the other
ha. nd, the very easiness with which we find these
apparent counterexamples to the separability
principle should make us doubtful about their real
validity as such. Obviously, none of the facts we
have just listed were unknown to Einstein. That
this latter author could nevertheless give cre-

dence to the separability principle should there-
fore induce us to try to be as critical in the use of
our conceptual frameworks as we are accustomed
to be in the use of our mathematical formalism.
Now as soon as we decide to make such an effort
we discover that of course Einstein was quite
right. In his times, separability could be ques-
tioned, but could not be disproved. For example,
the fact alluded to above that distant correlations
can take place even between spatially separated
events (when influenced by some common anterior
one) has, in fact, nothing to do with the principle
of separability, which refers, as just recalled,
not to our knowledge but to "the real factual situa-
tion. " More generally, the nonlocality of the
many-particle wave function cannot be used
straightaway as an argument against separability.
For that purpose it must indeed be associated
with an interPretation of that wave function, and
this leads to quite a long chain of arguments that
hinges on the validity of the general axioms of
quantum mechanics and the meaning we give to
them, and that has led to long and subtle contro-
versies.

Since in its principle our whole analysis is com-
pletely independent from quantum mechanics, its
conclusion against separability is free from such
inconveniences. Its main defect is that the experi-
mental results which should normally constitute
its firm basis are recent, incomplete, and still
somewhat controversial. We may, however, be
confident that such experimental ambiguities will
be resolved very soon.
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