Physics Letters A 171 (1992) 17-20
North-Holland

Appearance of a local world
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Why is it that nonlocality effects are not normally observed for pairs of systems one of which is (or both are) macroscopic?
This question is investigated in detail for the paradigm case of a measurement process, the instrument being viewed as a quantum
system. It is shown that whenever only classical dynamical quantities can be measured on the instrument the correlations between
the instrument and the measured system cannot exhibit any violation of the local causality assumption. Implications are drawn

concerning the empirical reality notion.

It is known from Bell’s theorem that quantum me-
chanics entails nonseparability (the violation of lo-
cal causality) in a variety of cases. Why is it then that
nonseparability is never observed except just in ex-
periments that have been conceived for the quite
specific purpose of testing it? =

Of course, according to its very definition non-
separability can only be seen in phenomena involv-
ing correlations between two or more distant phys-
ical systems that interacted in the past. This gives a
first hint as to where to look for an answer: most ex-
periments in physics are not concerned with phe-
nomena of this type. But still, in ordinary life as well
as in macroscopic physics distant correlation effects
trivially occur in many instances, so that it is a le-
gitimate question to ask why nonseparability effects
are not observed there. Would some be observed, we
may inquire, if actually looked for? Are there theo-
retical reasons to believe none would? If so, what ex-
actly are these reasons?

There are two quite different general lines along
which these questions can be approached. One is to
try and show that for such systems local causality
cannot even be defined meaningfully, so that the vi-
olation of the Bell inequalities and similar tests are
void of physical significance. This is impossible
within the realm of any theory that aims at being on-
tologically interpretable (Bell’s theorem) but can be
achieved if this condition is appropriately relaxed.

More precisely, it must then be relaxed in such a way
that the very notions of “objective state” and of “ele-
ments of reality” (as defined by EPR) are made
meaningless at least in so far as the microscopic dy-
namical attributes of the considered systems are con-
cerned [1]. A precise way to do this has been de-
scribed in the literature [2,3]. Its peculiarity is that
it restricts quite drastically the range of the notion of
truth as applied to propositions of physics in general,
and particularly subatomic physics.

Another approach, the one proposed here, centers
less on logical-epistemological and more on physical
considerations. It focuses on the measurements that
can be done in practice on the systems under study,
and aims at showing that the outcomes of these mea-
surements must obey local causality. In favor of this
conjecture there seems to exist some sort of general
feeling, sometimes backed up by sketchy arguments.
But the matter is important and worth being ana-
lyzed step by step.

Although the following considerations would a
Jortiori apply to pairs of correlated macroscopic Sys-
tems, they are developed here concerning pairs one
component, S, of which is a microsystem while the
other one, A, is a macroscopic one; and, somewhat
more specifically within the assumption that A is an
apparatus used for performing the measurement of
an observable pertaining to S. As for the definition
of what we mean by a “macroscopic” system we take
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up the one according to which a macroscopic system
is a system only the classical attributes of which can
be measured in practice.

For this definition to be precise the expression
“classical attribute” must in turn be defined. Fol-
lowing Omnés [4] let us do this by referring to the
classical dynamical variables a(g;, p;) (i=1, ..., n)
associated with the collective observables of a sys-
tem by means of Wigner’s 1932 formula [5]. Within
the 2n-dimensional phase space {g;, p;} we may then
consider a set of many nonoverlapping cells, C,. It
can then be shown [4] that

(a) provided their shape is simple enough and their
volume much larger than A" such cells can be asso-
ciated with projectors (more precisely quasi-projec-
tors) in an appropriate subspace of the overall Hil-
bert space of the system, and

(b) the commutator of two distinct such projec-
tors is vanishingly small as soon as the correspond-
ing cells are clearly separated. By definition the clas-
sical attributes of A are then the observables
represented by such commuting projectors (together
of course with the observables the spectral decom-
position of which involves only these projectors).

Keeping these notions in mind let us recall [6] how
they apply to the well-known measurement (or
*“Schridinger’s cat”) riddle. Let G, with eigenvalue
equation

Gin,ry=g,In, r), (1)

be the instrument coordinate (“pointer position”)
of A and let B, with eigenvalue equation

B|¢n>=bn|¢n>: (2)

be the quantity measured on S. The interaction be-
tween S and A is assumed to be such that

[@n>10,5> 1@, > 0,1, (3)

where |0, s) is any one of the instrument states cor-
responding to G=g,. The above mentioned “mea-
surement riddle” is then that if initially S is in a su-
perposition 3. a,|@,) of states |p,) the linearity of
the Schrodinger time dependent equation entails that
the final S+ A state is

W= Y anloadInr). (4)
n
According to our general assumptions, since A is a
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macroscopic system, the only dynamical quantities
that can in practice be measured in A are, along with
G, quantities described by operators Q,, ..., @;, ..., that
all commute with G and with one another. Let HS
and HA be the Hilbert spaces of S and A respectively
and in the eigensubspace &, of HA that corresponds
to G=g, let us take as a basis the eigenvectors
|81, «ees tiy ..y B, v) common to G and to @, ..., @, ....

Gltl: coop th ey N, U) =&n Itl’ 00 tla ey Ny U) ’ (5)
Ql Itls oy th vy Ny U) =ql(l” Ith o0 th vy Ny U) o (6)

With a trivial change of basis within each &, eq. (4)
can be rewritten (with ¢ standing for {¢,, ..., #;, ...})

Iw,f) — L; bt.n.u I¢n> Itlv evey ti: ooy My U) . (7)

Let then F be one or other of the observables of S,
with eigenvalue equation

FIf>=Af>. (8)

The probability p(f, ¢{”) that simultaneous mea-
surements of F on S and Q, on A yield outcomes f
and g{? is then

p(f,ai?)
‘= t;v' |<f|<tl9"'9 tb weey n, vlw_r)lzy (9)
= rgu' Ibl.n,v<f|¢n>|2’ (10)
= ; I(fl?n)lzg' Ibl,n,v|2
=§hmldl¢’n>|’, (11)
with
hn,ll= 2’ Ibt.n,vlzy (12)

where in egs. (9)-(12) ¥’ means that the sum-
mation does not extend over index ¢, Similarly the
probability that simultaneous measurements of G and
Q; yield outcomes g, and g{" is just h,, and the
probability p, that a measurement of G yields g, ir-
respective of what measurements of the Q;’s yield is

Pn= ;h,.,u- (13)

Conversely, the conditional probability p{® that a
measurement of Q, yields ¢g{? if it is known that a
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measurement of G yields (or has yielded) g, is of
course

piM=h, ,p7'. (14)
With these notations eq. (11) reads
Pfaf)= Y puDi” | {Sfload |2. (15)

In order to extract from this equation some infor-
mation connected with local causality, let us define,
for any value of the index n, an ensemble E, de-
scribed by the following (normalized) direct prod-
uct of a ket belonging to HS with one belonging to
HA,

I'//n>=pn_l I¢n> "Z bt,n.ultls soey tia ey Ny U) .
v

Within E,, the outcomes of a measurement of F on
S and a measurement of Q, on A are manifestly un-
correlated, as is always the case whenever the rep-
resentative ket is a direct product. The probability
that a measurement of F yields outcome f is
| {f19s> |* and the probability that a measurement
of Q, yields outcome g{” is p{™, independently in
both cases of whether or not a measurement of the
other observable is performed and, if it is, of its out-
come. Local causality is therefore obeyed in any E,,.
It follows that it is also obeyed in any proper mixture
of the E,’s, any correlation between the outcomes
being then due to “local causes” differing from one
E, to the other (here these local causes are of course
the different values g, of G). But on the other hand,
with the above noted values of the relevant proba-
bilities, inspection of eq. (15) shows that the pre-
dictions concerning the outcomes of simultaneous
measurements of F on S and Q; on A are the same
on an ensemble E described by |y,) as on a proper
mixture with weights p, of the E,,. It follows that ac-
cording to our assumption that A is a macrosystem
(and in view of the definition of macrosystems that
we are using), there can be no observable difference
between this proper mixture and ensemble E. Two
parallel consequences of this must be stressed. One
of them, which was pointed out long ago [6,7], is
that as long as the assumption in question can con-
sistently be kept, no experiment can show we are
mistaken when we say that in a proportion D, of the
components of E observable G has value g,,. The other
one, which this article purports to point out, is that
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under the same general conditions, although local
causality is violated in E as long as the ket (here
lwy> ) is viewed as a complete description of ensem-
ble E, still this violation can have no observable ef-
fect whatsoever.

In other words, all the consequences of local caus-
ality must hold true in the present case as long as only
quantities “measurable in practice” are considered.
This is true in particular concerning the most re-
markable of these consequences, namely the Bell in-
equalities. In fact a simple direct calculation leads to
the same resuit. The mean value of a correlation
product of the type FQ, is

<FQ1> = t;v Ibt.n,v|2<¢n |F|¢n>qt(:') s

which can also be written as

(FOi»= ;‘.m(Fn)(Qi.n)', (16)
where

CFa)>=(@:|Flo,) (17)
and

(Qund= );pa"’qé" (18)

are the mean values in E, of F and Q, respectively.
Expression (16) is identical to the one that, in ob-
jective local theories, describes the mean value of a
correlation product, n (or g,) playing the role of the
“objective state” A and p, that of the “density of ob-
jective states” p(4). The Bell inequalities follow (of
course this does not come as a surprise; we all realize
that a violation of these inequalities can be expected
only when pairs of incompatible measurements are
considered on both systems).

Recently Peres [8] and Khalfin and Tsirelson [9]
probed theorems that go along the same lines as what
has been shown here. Peres could show that al-
though, in a case in which a pair of spin j particles
is created in a singlet state, the Bell inequalities re-
main violated even for arbitrarily large j values, still
they are obeyed by the outcomes of any measure-
ments in which neighboring values of a J component
are lumped together because of limited instrumental
resolution. As for Khalfin and Tsirelson, they showed
a result rather similar to ours, but with, for the mac-
roscopic systems, a different definition that has the
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consequence that the Bell inequalities could con-
ceivably be violated, in border-line cases, even for
some macroscopic bodies.
~ To correctly understand the result described here
“it is necessary to remember that it relies on an
avowedly anthropocentric definition of the macro-
scopic systems and that therefore one and the same
system may well be, or not be, macroscopic, accord-
ing to the degree of refinement of the experiments it
is subjected to. For this very reason, however, the
result in question is useful as a means of stressing the
relevance and further clarifying the nature of a dis-
tinction between the concepts of independent and
empirical reality that quantum mechanics seems to
suggest [10]. While no description of independent
reality can be made to accommodate local causality,
the fact that nonseparability does not allow for faster-
than-light signalling could already be seen as a sig-
nificant indication that it should be possible to de-
fine empirical reality in such a way that it at least
should not violate local causality. The here obtained
result shows that indeed this can be done rather sim-
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ply, just by defining empirical reality as essentially
being the set of the macroscopic systems.

References

[1)B. d’Espagnat, Nonseparability and some views on reality,
in: Proc. 13th Int. Wittgenstein Symposium, Kirchberg,
Wechsel (Austria), 14-21 August 1988, ed. Wittgenstein
Gesellschaft, Vienna (1989).

[2]R. Omns, J. Stat. Phys. 62 (1991) 841.

(3] B. d’Espagnat, Found. Phys. 20 (1990) 1147.

{4] R. Omn2s, Rev. Mod. Phys. 64 (1992) 339.

(5] E.P. Wigner, Phys. Rev. 40 (1932) 749.

(6]1B. d’Espagnat, Conceptual foundations of gquantum
mechanics, 2nd Ed. (Addison-Wesley, Reading, MA, 1976);
3rd Ed. (1989).

[713.M. Jauch, Helv. Phys. Acta 37 (1964) 293.

[8] A. Peres, Found. Phys. 22 (1992) 819.

{9]1L.A. Khalfin and B.S. Tsirelson, Quantum/classical
correspondence in the light of Bell’s inequalitites, Tech. Rep.
MIT/LCS/TM/420 (1990).

[10] B. d’Espagnat, Une incertaine réalité (Gauthier-Villars-
Bordas, Paris, 1985) [English translation: Reality and the
Physicist (Cambridge Univ. Press, Cambridge, 1989) 1




