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The idea is discussed according to which, in the Heisenberg picture, the operators 
correspond to the dynamic properties while the density matrix corresponds to our 
knowledge. A simple, soluble model is made use of in order to determine in what 
way this idea needs to be refined and what it then tells us about the relationship 
o f  reality and physics. 

My thesis adviser was Louis de Broglie and I still keep many short letters 
he wrote me. They testify that, notwithstanding his many duties (and his 
innermost conviction that young people should find their own ways, as he 
himself did), he was most keen and gentle at guiding beginners. Of course 
I could hardly have found a thesis adviser with a more genuine interest in 
the foundations of quantum theory, and i am sure he would have inspired 
me with it if I had not felt it right from the start. It is a pleasure for me 
to be able to dedicate this article to his memory. 

To the name "quantum theory" Louis de Broglie preferred that of 
"wave mechanics," which he had coined and which reflected his conception 
that the wave is quite a real thing. Of course, in this respect he and 
Schr6dinger went hand in hand. The Schr6dinger picture was for him the 
natural one as it is for many of us, and I doubt that the Heisenberg picture 
was ever, in his views, anything more than just an abstract tool without 
real physical content. 

Still, in some fields this abstract tool has quite decisive advantages. It 
is difficult to imagine how quantum field theory could have been developed 
entirely without it. And even on questions having to do with the physical 
interpretation of the theory there are some arguments tending to show that 
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it might help. After all, classical physics is interpretable without much 
problems and, in it, the dynamical variables are time-dependent. On this 
ground it would seem that a picture in which the mathematical objects 
describing these variables are time-dependent also (and obey classical 
equations) has some good chances of being rnore easily interpretable than 
one in which they are not. The fact that the alternative picture, the one 
of Schr6dinger, suffers from well-known interpretational difficulties-- 
entanglement and Schr6dinger's cat--may be felt as adding weight to the 
foregoing idea. 

The difficulties in question are intimately connected with measurement 
theory. An obvious question therefore is: "what about measurement--and 
knowledge--in the Heisenberg picture?" In the present paper I shall tackle 
this problem by means of a soluble model describing a measurement-like 
interaction. A convenient one has been considered by Peres./1/ It consists 
in a measurement of the z component Sz of a spin-l/2 particle S by means 
of an instrument A with pointer coordinate G. The eigenvalue equations 

s~l+ > :  +1+> (1) 

GIF+_> =g+ IF+> (2) 

serve to define the notations. Let, moreover, the initial value, at time 0, of 
G be g+, and let the measurement process consist in the fact that if 
Sz = +1 (in units of ti/2) the value of G is unchanged whereas if S~ : -1 ,  
G is flipped to G = g_.  An interaction Hamiltonian H '  that, according to 
the time-dependent Schr6dinger equation, accounts exactly for such a 
process is 

H ' - - B ( t ) I -  ><- I  @P (3) 

where /~(t) is a smooth function of time with compact support (0, tl) 
satisfying 

f~l fl(t) dt = 7~ (4) 

and where P is the projector 

P=2-1 ( IF+  > -  IF_ >)(<F+I - <F l) 

for indeed the time-dependent ket 

I~(t)  > = {1 + [e i~,~_ 1 ] I - > < - I ® P}  I~(0)  > 

with 

co(t) = I' ~(t') dt' 
Jo 

(5) 

(6) 

(7) 
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is (as easily checked) a solution of the Schr6dinger equation 

, - -aT- = H'I ~> (8) 

and, moreover, if 

[ ~(0)>  = j g-'+ (0 ) )  - l +  > @ [F+ > (9) 

then Eq. (6) yields for the final state, I ~u(tt)), after the interaction is over: 

l ~ + ( t l ) > = [ +  >@IF+> (lO) 

while, if 

I~(0)> = j~  (0)>= J -  >@IF+> (11) 

then it yields 

I ~'-(n)> = I-  >® IF_ > (12) 

in agreement with the above stated conditions on G. 
As shown by Eq. (6) [together with Eq. (4)], the unitary operator 

U ~- U(oo) which, in the Schr6dinger picture, describes the time evolution 
of the composite S + A system from its initial to its final state is 

U = * - I -  >< -1@2P  

= I + ) ( + I @ ( I F + ) ( F + I + I F _ ) ( F  1) 

+}- >(-I@(IF-><F+I + JF+><F_I) (13) 

an operator which, in addition to being unitary, happens to be Hermitian 
as well: Ut=  U. 

This model will now be "translated" into the Heisenberg picture. With 
the help of U it is an easy matter to study, in this picture, the time evolu- 
tion of the operators representing the physical quantities that are of interest 
in the present problem. The most directly relevant ones are the operators 
B(t) and F(t) which, at time t = 0 (i.e., before the measurement takes place) 
have the form 

B(0)= (I + >< +1 - l -  > < - I ) @ 1  (14) 

and 

F ( 0 ) = { ® ( g + I F + > ( F + t + g _ [ F _ ) ( F  [) (t5) 
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The operator B(0) effectively operates in the Hilbert space of the 
measured spin-l/2 particle only, and adequately represents, at time t = 0, 
the attribute "z spin component Sz" of the latter. Similarly F(0) effectively 
operates in the Hilbert space of the instrument only and adequately 
represents, at time t = 0, the attribute "pointer position G" of the latter. In 
Eq. (15) the eigenvalues g+ and g_ of F(0) are just the values the pointer 
coordinate can be found to have. Of course the actual values Sz and G are 
initially known to have are specified, not by the operators B(0) and F(0), 
but by the ket representing at time 0 the composite S + A system. This ket 
is either I~U+(0)) or I~_(0) )  [-Eqs. (9) and (11)] according to whether 
the to-be-measured spin points up or down. If we worked within the 
Schr6dinger picture, this ket would be transformed by the & A interaction 
constituting the measurement process into I~g+(tl)) [Eq. (10)] in the first 
case and I ~ - ( t  1)) [Eq. (12)] in the second case. In the Heisenberg picture 
the representative ket remains equal to [g t(0)) since it is time-invariant 
during this whole interaction process and the operators change, according 
to 

n ( t l )  = UB(O)U= (I-t- ) (  -t- I - l -  ) (  - I ) @  4 (16) 

and 

with 

and 

F(tl)=g+P+ +g_P_ (17) 

P =[+>(-q-I®IF_>(F_I-q-I-)<-IQIF+>(F+I (18b) 

as is easily calculated. 
To calculate the probability Pl that the outcome of an observation of, 

say, G at time t 1 is gi (i = + or - ) by using the Heisenberg picture, we use 
the spectral decomposition (17) of F. The probability Pi is then given by 

Pe = ( 7~(0)[ fie I~(0) ) -= Tr [ I ~g(0) ) ( ~(0)l P~] (19) 

In the case in which I g J (0 ) )=  I~U_(0)) (which is the only nontrivial 
one) formula (18b) then yields 

p+ = 0, p_ = 1 (20) 

as expected, since the Schr6dinger and Heisenberg pictures are mathemati- 
cally equivalent. Nevertheless, Eqs. (17), (18a), and (18b) are instructive, 

P+=I+><+I®IF+><F+I+I-><-I®IF_><F_I (18a) 
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for they show that F(t~) operates in the Hilbert space j e f s ® y a  of the 
whole S + A system and contrary to F(0) cannot be written in the form 

I ® K  (21) 

where K would operate only in the Hilbert space J(f~ of the instrument. To 
describe this (well-known), general effect, the word entanglement is 
obviously appropriate, although the effect in question does not coincide 
with the one Schrtdinger called entanglement since it takes place even in 
simple cases such as the above considered one, in which no initial linear 
superposition of states I+ ) and [ -  ) is considered. 

The above formulas may serve to investigate the bearing of an inter- 
pretation expressed in particular by Unruh (2) according to which the 
Heisenberg picture offers a decisive advantage over the Schrtdinger picture 
when issues of quantum measurement theory are discussed. According 
to this interpretation, while the Schrtdinger picture hopelessly mixes 
dynamics and "knowledge" (it is the same entity, ~, that evolves according 
to the Schrtdinger equation and is abruptly changed upon measurement), 
in the Heisenberg picture, on the contrary, one can regard quantum 
mechanics as actually giving attributes to the physical entities in the world, 
the only difference with classical physics being that these attributes are 
represented mathematically not by numbers but by operators. As is 
natural, these attributes change in the course of time and develop accord- 
ing to the appropriate laws of motion. Within this interpretation the wave 
function (or ket, or density matrix) essentially represents our knowledge of 
the system: not surprising that it should abruptly change when our 
information increases due to some measurement being done. But it is 
our knowledge that then abruptly changes, not the physical system. 

It is clear that the explicit expressions (16) and (17) obtained in our 
model for the Heisenberg operators B and F are such as to raise some 
questions concerning the real import of the above interpretation. The point 
is that in a case in which we know for sure that at time t = 0 the spin is 
down and G has value g+, we also know for sure that at time t~ the 
spin is down and G has value g_.  If we really were entitled to say, as we 
did above, that at time t = 0  B(0) [Eq. (14)] and F(0) [Eq. (15)] are 
adequate representations of the physical attributes of the S + A system, 
why should somebody coming in our laboratory at time t~ and being then 
informed that the spin is down and G has value g_ not be entitled to say 
that it is at that time--not at time 0---that the right-hand sides of Eqs. (14) 
and (15) adequately describe the physical attributes in question? By 
describing our knowledge of the composite system by means of ket (12), 
this person would have a (Heisenberg) representation of both the system 
and our knowledge of it just as adequate at all times as the foregoing one, 

825/22/12-7 
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in which at time tl we described the composite system by means of expres- 
sions (16) and (17) and our knowledge of it by means of expression (11). 

Since we have to do with the same system and the same "knowledge" 
in both cases, this plurali ty--or at least duali ty--of  descriptions, which has 
no obvious parallel in the Schr6dinger picture, is intriguing. At this stage, 
the only hope there is of salvaging the view that the operators represent the 
physical reality of the system and the ket represents our knowledge, seems 
to be to compare the state of affairs at hand to the fact that when we decide 
to represent a vector by its components we are free to choose the coor- 
dinate system in the way we like, and the sets of numbers we get depend 
on this free choice of ours. However, in the present case there is nothing 
that corresponds to the vector notation. The idea is sometimes entertained 
that the Heisenberg operators are just what would correspond to this 
coordinate-system-independent vector notation: but the above shows this 
to be a delusion. 

With the foregoing in mind, we can now turn to measurement theory. 
Up to this point we have not been really dealing with it. It was mainly for 
semantic convenience that we referred to system A as an instrument. In 
fact, what we were interested in was just the behavior of a certain S + A 
system (with a well-specified internal Hamiltonian) and the knowledge an 
external observer may have of it. At present let us go on considering the 
S + A system as an ordinary quantum-mechanical one, but let us assume 
that its state at time 0 is a linear combination: 

with 

~(O)=aTt+(O)+bT (O)=(aL+)+bl-))®F+ (22) 

lal2--I - Ibl2= 1 (23) 

This, of course, changes nothing to the Heisenberg equations of 
motion, so that at time t, Eqs. (16) and (17) are still valid (and remain so 
afterwards since the Hamiltonian then vanishes). Suppose now that at time 
tl we make (by means of some superinstrument) a measurement of G. 
The probability of getting g is again given by Eq. (19) with i = - and is 
easily found to be Ibl 2, as expected. Assuming that the outcome of the 
measurement is indeed g , the corresponding reduced density matrix p'_ 
is obtained from the initial one 

p(0) = I~P(0) ) (~b(0)[ (24) 

by the well-known formula 

p "  =/~ p(0)/~_/Tr[ /~_ Po] (25) 
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which yields 

P'- = I -  ) (  - [ ®  IF+ ) ( F + I  (26) 

In Unruh's interpretation this p'_ is considered as expressing our 
knowledge of the S+A system after t 1. To be sure, this knowledge is 
expressed there in a queer and roundabout way since there is an 
I F + ) ( F + I  symbol in Eq. (26) while what we know is that G = g  . But, 
again, this is because Eq. (26) must be used in conjunction with the 
description of the S +  A system given by Eqs. (16) and (17) so that, for us 
who know that G=g_ at tl, the probability to get G=g_ again upon 
measuring G once more at a time t 2 > t 1 is 

T r [ p ' _ / S  ] = 1 

as it should. 
Unruh appropriately stresses the fact that in the Heisenberg picture 

the transition from p to p' has nothing to do with the dynamics of the 
system, which is expressed by the time dependence of the Heisenberg 
operators. This he contrasts with the elementary interpretation of the 
collapse in the Schr6dinger picture, where the wave function is thought of 
as representing reality and where its collapse is therefore conceived of as an 
event that affects the system itself. But the question whether the advantage 
of the Heisenberg picture is as great as he sees it to be is a subtle one and 
is worth further examination. For indeed, also in the Schr6dinger picture 
nothing forces us to consider the collapse as a real physical effect. In fact, 
we even know that as long as the instrument (here the superinstrument) is 
a system with a finite number of degrees of freedom and can be thought of 
as isolated, we are not allowed to do so. In other words, in the Schr6dinger 
picture and when questions of interpretation are at stake, we should 
consider not just one but two wave functions: the reduced one that encodes 
what we consider as being our collective knowledge, just as p '  does here, 
and the unreduced, global one that represents the dynamics of the system 
plus instrument. That the same duality is present also in the Heisenberg 
picture is clearly seen on the above model for along with p ' ,  as generally 
expressed by Eq. (25) [and in the present instance by Eq. (26)], we may 
also consider the--more natural--  

p"_ ( t l ) =  l-- )< --]@ IF_ ) ( F  [ 

which has to be used together with the "collapsed" dynamics 

B(t>~ t~)= (I + >< + 1 - I -  ><-I)®'~ 

F(t>_-t,)=I®IF_)(F_I 
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It is true that contrary to the Schr6dinger global wave function, the 
Heisenberg picture operators can be written down without any symbol 
referring to the variables of the instrument with the help of which the 
information described by Eq. (25) is gained. But this is essentially due to 
the fact, to which we return somewhat more explicitly below, that contrary 
to what is sometimes believed, these operators do not really correspond 
to any actual situation--or state of the system, whereas the global 
Schr6dinger wave function is, rightly or wrongly, sometimes understood 
that way (see, e.g., Everett's theory). 

These considerations may be thought to lessen the advantage that the 
Heisenberg picture seemed to have over the Schr6dinger one concerning 
the problems of interpretation. But this appreciation requires qualifying 
again. What seems really doubtful is the possibility of bluntly asserting 
that in the Heisenberg picture the operators correspond to the physical 
atributes of the systems roughly in the same way as appropriate numbers 
correspond to them within classical physics. The point here is that in 
classical physics symbols such as r, v, E, B etc. have a dual role. They serve 
for writing down the dynamical equations (Maxwell's equations and the 
rest) and for designating the values that, in any particular instance, the 
quantities they refer to actually have (of course these values differ from one 
instance to the next: Not all planetary systems have their planets exactly at 
the same points at the same time, and so on). If the symbols B(t), P(t), etc. 
that appear in the Heisenberg picture were to play in quantum physics the 
role these classical symbols play in classical physics, they should somehow 
have the same dual use: It would not be enough that they serve in writing 
down general equations derived from some Lagranglan. They should also, 
in such and such particular instance, serve to designate the (operator- 
valued) physical quantity that, in this instance, the considered system 
actually has. Indeed, when, in classical physics, we say that a measurement 
(assumed ideal) "merely modifies our information without changing the 
values of r, v and the other dynamical variables of the system," we obviously 
refer to this second role the symbols r, v, etc. have. For us to be able to 
give a meaning to the assertion that a quantum measurement does not 
change the dynamical quantities represented by the Heisenberg operators 
B(t), P(t), etc. (and only changes our knowledge concerning them), it 
would be necessary that the same should be true of them. In other words, 
these operators should be actually interpretable as representing some 
properties that in such and such circumstances a system happens to have. 
But this means that somehow they should refer, at least in a sense, to the 
physical state of the system as it, contingently, is. The illusion that they do 
seems to be implicitly entertained by some authors. It presumably stems 
from the fact that in a case m which two systems, such as S and A in our 
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model, come into interaction, it seems extremely natural to describe the 
overall system they constitute before they interact by means of a Cartesian 
product of two operators, each one of which operates in the Hilbert space 
of one system only. A partial specification of the involved operators is 
thereby produced that goes over and beyond the mere general formulas 
derived from the Lagrangian of the theory, and takes into account at least 
some of the contingent, physical properties of the systems at hand. But, 
as our  simple model clearly shows, this specification is in fact just a 
convenient choice we make. In the model in question it can be made either 
at time t = 0  or at time t =  t~, but not at both, and there is no reason 
whatsoever to consider that the contingent physical features (or "dynamical 
properties") of the systems at hand make one of these choices more natural 
than the other. 

Finally, therefore, we come to the conclusion that the Heisenberg 
operators reflect no contingent features, or dynamical properties, of this or 
that particular system, which means that the above-considered analogy 
with the coordinates of a vector was still overemphasizing the similarity 
between these operators and classical dynamical variables. But--and this 
is, I think, the most important point--all this does not mean that these 
operators have no correspondence with reality. Their role and usefulness in 
the general equations of the theory amply testify to the contrary. Only, this 
is not the contingent reality of this or that particular physical system. It is 
the structural reality--so to speak--of the world. Hence, the existence and 
usefulness of the Heisenberg picture is a good indication of the fact that the 
one word "reality" covers in fact two different concepts both of which are 
meaningful: there is, on the one hand, the just-mentioned structural reality 
of the world, which I use to call "independent reality" (but I shall not 
quarrel about this name any more than about any other one!), and, on the 
other hand, the observable, contingent reality of this or that particular 
system: the one that our wave functions, density matrix, and so on tell us 
something about. That this "empirical reality," as I call it, is intersubjective 
rather than strongly objective is, I think, amply demonstrated by the 
detailed investigations that have been carried out by many people in the 
foundations of quantum mechanics (see, e.g., Ref. 3). 

In 1914 Henri Poincar6, in La Science et fHypothOse, spoke of the 
"real objects" as objects that "Nature will hide from us forever." But, he 
went on, this does not mean that the status of the physical theories is 
thereby lowered to that of mere recipes, for, he wrote, the equations remain 
true even when their interpretation change and they express relationships 
between the objects. If they remain true it is because these relationships are 
real. Seen in the light of this philosophy, the operators in the Heisenberg 
picture appear as elements of a true description of the structure--not 
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produced by man--of "independent reality." And the fact that the 
Heisenberg picture works therefore indicates that, contrary to the views of 
"antirealists" and other philosophers with similar trends, the notion of an 
independent reality makes sense, even though no kind of "naive realism'" 
seems able to survive the findings of contemporary physics. 
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